150,041 research outputs found

    Towards Improved Imbalance Robustness in Continual Multi-Label Learning with Dual Output Spiking Architecture (DOSA)

    Full text link
    Algorithms designed for addressing typical supervised classification problems can only learn from a fixed set of samples and labels, making them unsuitable for the real world, where data arrives as a stream of samples often associated with multiple labels over time. This motivates the study of task-agnostic continual multi-label learning problems. While algorithms using deep learning approaches for continual multi-label learning have been proposed in the recent literature, they tend to be computationally heavy. Although spiking neural networks (SNNs) offer a computationally efficient alternative to artificial neural networks, existing literature has not used SNNs for continual multi-label learning. Also, accurately determining multiple labels with SNNs is still an open research problem. This work proposes a dual output spiking architecture (DOSA) to bridge these research gaps. A novel imbalance-aware loss function is also proposed, improving the multi-label classification performance of the model by making it more robust to data imbalance. A modified F1 score is presented to evaluate the effectiveness of the proposed loss function in handling imbalance. Experiments on several benchmark multi-label datasets show that DOSA trained with the proposed loss function shows improved robustness to data imbalance and obtains better continual multi-label learning performance than CIFDM, a previous state-of-the-art algorithm.Comment: 8 pages, 4 figures, 4 tables, 45 references. Submitted to IJCNN 202

    Multi-graph learning

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Multi-instance learning (MIL) is a special learning task where labels are only available for a bag of instances. Although MIL has been used for many applications, existing MIL algorithms cannot handle complex data objects, and all require that instances inside each bag are represented as feature vectors (e.g. being represented in an instance-feature format). In reality, many real-world objects are inherently complicated, and an object can be represented as multiple instances with dependency structures (i.e. graphs). Such dependency allows relationships between objects to play important roles, which, unfortunately, remain unaddressed in traditional instance-feature representations. Motivated by the challenges, this thesis formulates a new multi-graph learning paradigm for representing and classifying complicated objects. With the proposed multi-graph representation, the thesis systematically addresses several key learning tasks, including Multi-Graph Learning: A graph bag contains one or multiple graphs, and each bag is labeled as either positive or negative. The aim of multi-graph learning is to build a learning model from a number of labeled training bags to predict previously unseen bags with maximum accuracy. To solve the problem, we propose two types of approaches: 1) Multi-Graph Feature based Learning (gMGFL) algorithm that explores and selects an optimal set of subgraphs as features to transfer each bag into a single instance for further learning; and 2) Boosting based Multi-Graph Classification framework (bMGC), which employs dynamic weight adjustment, at both graph- and bag-levels, to select one subgraph in each iteration to form a set of weak graph classifiers. Multi-Instance Multi-Graph learning: A bag contains a number of instances and graphs in pairs, and the learning objective is to derive classification models from labeled bags, containing both instances and graphs, to predict previously unseen bags with maximum accuracy. In the thesis, we propose a Dual Embedding Multi-Instance Multi-Graph Learning (DE-MIMG) algorithm, which employs a dual embedding learning approach to (1) embed instance distributions into the informative subgraphs discovery process, and (2) embed discovered subgraphs into the instance feature selection process. Positive and Unlabeled Multi-Graph Learning: The training set only contains positive and unlabeled bags, where labels are only available for bags but not for individual graphs inside the bag. This problem setting raises significant challenges because bag-of-graph setting does not have features available to directly represent graph data, and no negative bags exits for deriving discriminative classification models. To solve the challenge, we propose a puMGL learning framework which relies on two iteratively combined processes: (1) deriving features to represent graphs for learning; and (2) deriving discriminative models with only positive and unlabeled graph bags. Multi-Graph-View Learning: A multi-graph-view model utilizes graphs constructed from multiple graph-views to represent an object. In our research, we formulate a new multi-graph-view learning task for graph classification, where each object to be classified is represented graphs under multi-graph-view. To solve the problem, we propose a Cross Graph-View Subgraph Feature based Learning (gCGVFL) algorithm that explores an optimal set of subgraph features cross multiple graph-views. In addition, a bag based multi-graph model is further used to relax the labeling by only requiring one label for each graph bag, which corresponds to one object. For learning classification models, we propose a multi-graph-view bag learning algorithm (MGVBL), to explore subgraphs from multiple graph-views for learning. Experiments on real-world data validate and demonstrate the performance of proposed methods for classifying complicated objects using multi-graph learning

    DLUNet: Semi-supervised Learning based Dual-Light UNet for Multi-organ Segmentation

    Full text link
    The manual ground truth of abdominal multi-organ is labor-intensive. In order to make full use of CT data, we developed a semi-supervised learning based dual-light UNet. In the training phase, it consists of two light UNets, which make full use of label and unlabeled data simultaneously by using consistent-based learning. Moreover, separable convolution and residual concatenation was introduced light UNet to reduce the computational cost. Further, a robust segmentation loss was applied to improve the performance. In the inference phase, only a light UNet is used, which required low time cost and less GPU memory utilization. The average DSC of this method in the validation set is 0.8718. The code is available in https://github.com/laihaoran/Semi-SupervisednnUNet.Comment: 13 page, 3 figure

    Multitask learning without label correspondences

    Get PDF
    We propose an algorithm to perform multitask learning where each task has potentially distinct label sets and label correspondences are not readily available. This is in contrast with existing methods which either assume that the label sets shared by different tasks are the same or that there exists a label mapping oracle. Our method directly maximizes the mutual information among the labels, and we show that the resulting objective function can be efficiently optimized using existing algorithms. Our proposed approach has a direct application for data integration with different label spaces for the purpose of classification, such as integrating Yahoo! and DMOZ web directories

    An Adaptive Sampling Scheme to Efficiently Train Fully Convolutional Networks for Semantic Segmentation

    Full text link
    Deep convolutional neural networks (CNNs) have shown excellent performance in object recognition tasks and dense classification problems such as semantic segmentation. However, training deep neural networks on large and sparse datasets is still challenging and can require large amounts of computation and memory. In this work, we address the task of performing semantic segmentation on large data sets, such as three-dimensional medical images. We propose an adaptive sampling scheme that uses a-posterior error maps, generated throughout training, to focus sampling on difficult regions, resulting in improved learning. Our contribution is threefold: 1) We give a detailed description of the proposed sampling algorithm to speed up and improve learning performance on large images. We propose a deep dual path CNN that captures information at fine and coarse scales, resulting in a network with a large field of view and high resolution outputs. We show that our method is able to attain new state-of-the-art results on the VISCERAL Anatomy benchmark
    • …
    corecore