30 research outputs found

    Dual Failure Resilient BFS Structure

    Full text link
    We study {\em breadth-first search (BFS)} spanning trees, and address the problem of designing a sparse {\em fault-tolerant} BFS structure, or {\em FT-BFS } for short, resilient to the failure of up to two edges in the given undirected unweighted graph GG, i.e., a sparse subgraph HH of GG such that subsequent to the failure of up to two edges, the surviving part HH' of HH still contains a BFS spanning tree for (the surviving part of) GG. FT-BFS structures, as well as the related notion of replacement paths, have been studied so far for the restricted case of a single failure. It has been noted widely that when concerning shortest-paths in a variety of contexts, there is a sharp qualitative difference between a single failure and two or more failures. Our main results are as follows. We present an algorithm that for every nn-vertex unweighted undirected graph GG and source node ss constructs a (two edge failure) FT-BFS structure rooted at ss with O(n5/3)O(n^{5/3}) edges. To provide a useful theory of shortest paths avoiding 2 edges failures, we take a principled approach to classifying the arrangement these paths. We believe that the structural analysis provided in this paper may decrease the barrier for understanding the general case of f2f\geq 2 faults and pave the way to the future design of ff-fault resilient structures for f2f \geq 2. We also provide a matching lower bound, which in fact holds for the general case of f1f \geq 1 and multiple sources SVS \subseteq V. It shows that for every f1f\geq 1, and integer 1σn1 \leq \sigma \leq n, there exist nn-vertex graphs with a source set SVS \subseteq V of cardinality σ\sigma for which any FT-BFS structure rooted at each sSs \in S, resilient to up to ff-edge faults has Ω(σ1/(f+1)n21/(f+1))\Omega(\sigma^{1/(f+1)} \cdot n^{2-1/(f+1)}) edges

    Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees

    Full text link
    Let GG be an nn-node and mm-edge positively real-weighted undirected graph. For any given integer f1f \ge 1, we study the problem of designing a sparse \emph{f-edge-fault-tolerant} (ff-EFT) σ\sigma{\em -approximate single-source shortest-path tree} (σ\sigma-ASPT), namely a subgraph of GG having as few edges as possible and which, following the failure of a set FF of at most ff edges in GG, contains paths from a fixed source that are stretched at most by a factor of σ\sigma. To this respect, we provide an algorithm that efficiently computes an ff-EFT (2F+1)(2|F|+1)-ASPT of size O(fn)O(f n). Our structure improves on a previous related construction designed for \emph{unweighted} graphs, having the same size but guaranteeing a larger stretch factor of 3(f+1)3(f+1), plus an additive term of (f+1)logn(f+1) \log n. Then, we show how to convert our structure into an efficient ff-EFT \emph{single-source distance oracle} (SSDO), that can be built in O~(fm)\widetilde{O}(f m) time, has size O(fnlog2n)O(fn \log^2 n), and is able to report, after the failure of the edge set FF, in O(F2log2n)O(|F|^2 \log^2 n) time a (2F+1)(2|F|+1)-approximate distance from the source to any node, and a corresponding approximate path in the same amount of time plus the path's size. Such an oracle is obtained by handling another fundamental problem, namely that of updating a \emph{minimum spanning forest} (MSF) of GG after that a \emph{batch} of kk simultaneous edge modifications (i.e., edge insertions, deletions and weight changes) is performed. For this problem, we build in O(mlog3n)O(m \log^3 n) time a \emph{sensitivity} oracle of size O(mlog2n)O(m \log^2 n), that reports in O(k2log2n)O(k^2 \log^2 n) time the (at most 2k2k) edges either exiting from or entering into the MSF. [...]Comment: 16 pages, 4 figure

    Optimal Vertex Fault Tolerant Spanners (for fixed stretch)

    Full text link
    A kk-spanner of a graph GG is a sparse subgraph HH whose shortest path distances match those of GG up to a multiplicative error kk. In this paper we study spanners that are resistant to faults. A subgraph HGH \subseteq G is an ff vertex fault tolerant (VFT) kk-spanner if HFH \setminus F is a kk-spanner of GFG \setminus F for any small set FF of ff vertices that might "fail." One of the main questions in the area is: what is the minimum size of an ff fault tolerant kk-spanner that holds for all nn node graphs (as a function of ff, kk and nn)? This question was first studied in the context of geometric graphs [Levcopoulos et al. STOC '98, Czumaj and Zhao SoCG '03] and has more recently been considered in general undirected graphs [Chechik et al. STOC '09, Dinitz and Krauthgamer PODC '11]. In this paper, we settle the question of the optimal size of a VFT spanner, in the setting where the stretch factor kk is fixed. Specifically, we prove that every (undirected, possibly weighted) nn-node graph GG has a (2k1)(2k-1)-spanner resilient to ff vertex faults with Ok(f11/kn1+1/k)O_k(f^{1 - 1/k} n^{1 + 1/k}) edges, and this is fully optimal (unless the famous Erdos Girth Conjecture is false). Our lower bound even generalizes to imply that no data structure capable of approximating distGF(s,t)dist_{G \setminus F}(s, t) similarly can beat the space usage of our spanner in the worst case. We also consider the edge fault tolerant (EFT) model, defined analogously with edge failures rather than vertex failures. We show that the same spanner upper bound applies in this setting. Our data structure lower bound extends to the case k=2k=2 (and hence we close the EFT problem for 33-approximations), but it falls to Ω(f1/21/(2k)n1+1/k)\Omega(f^{1/2 - 1/(2k)} \cdot n^{1 + 1/k}) for k3k \ge 3. We leave it as an open problem to close this gap.Comment: To appear in SODA 201

    Reachability Preservers: New Extremal Bounds and Approximation Algorithms

    Full text link
    We abstract and study \emph{reachability preservers}, a graph-theoretic primitive that has been implicit in prior work on network design. Given a directed graph G=(V,E)G = (V, E) and a set of \emph{demand pairs} PV×VP \subseteq V \times V, a reachability preserver is a sparse subgraph HH that preserves reachability between all demand pairs. Our first contribution is a series of extremal bounds on the size of reachability preservers. Our main result states that, for an nn-node graph and demand pairs of the form PS×VP \subseteq S \times V for a small node subset SS, there is always a reachability preserver on O(n+nPS)O(n+\sqrt{n |P| |S|}) edges. We additionally give a lower bound construction demonstrating that this upper bound characterizes the settings in which O(n)O(n) size reachability preservers are generally possible, in a large range of parameters. The second contribution of this paper is a new connection between extremal graph sparsification results and classical Steiner Network Design problems. Surprisingly, prior to this work, the osmosis of techniques between these two fields had been superficial. This allows us to improve the state of the art approximation algorithms for the most basic Steiner-type problem in directed graphs from the O(n0.6+ε)O(n^{0.6+\varepsilon}) of Chlamatac, Dinitz, Kortsarz, and Laekhanukit (SODA'17) to O(n4/7+ε)O(n^{4/7+\varepsilon}).Comment: SODA '1

    An Optimal Dual Fault Tolerant Reachability Oracle

    Get PDF
    Let G=(V,E) be an n-vertices m-edges directed graph. Let s inV be any designated source vertex. We address the problem of reporting the reachability information from s under two vertex failures. We show that it is possible to compute in polynomial time an O(n) size data structure that for any query vertex v, and any pair of failed vertices f_1, f_2, answers in O(1) time whether or not there exists a path from s to v in G{f_1,f_2}. For the simpler case of single vertex failure such a data structure can be obtained using the dominator-tree from the celebrated work of Lengauer and Tarjan [TOPLAS 1979, Vol. 1]. However, no efficient data structure was known in the past for handling more than one failures. We, in addition, also present a labeling scheme with O(log^3(n))-bit size labels such that for any f_1, f_2, v in Vit is possible to determine in poly-logarithmic time if v is reachable from s in G{f_1,f_2} using only the labels of f1, f_2 and v. Our data structure can also be seen as an efficient mechanism for verifying double-dominators. For any given x, y, v in V we can determine in O(1) time if the pair (x,y) is a double-dominator of v. Earlier the best known method for this problem was using dominator chain from which verification of double-dominators of only a single vertex was possible
    corecore