23,414 research outputs found

    An Ontology-Based Artificial Intelligence Model for Medicine Side-Effect Prediction: Taking Traditional Chinese Medicine as An Example

    Get PDF
    In this work, an ontology-based model for AI-assisted medicine side-effect (SE) prediction is developed, where three main components, including the drug model, the treatment model, and the AI-assisted prediction model, of proposed model are presented. To validate the proposed model, an ANN structure is established and trained by two hundred and forty-two TCM prescriptions. These data are gathered and classified from the most famous ancient TCM book and more than one thousand SE reports, in which two ontology-based attributions, hot and cold, are introduced to evaluate whether the prescription will cause SE or not. The results preliminarily reveal that it is a relationship between the ontology-based attributions and the corresponding predicted indicator that can be learnt by AI for predicting the SE, which suggests the proposed model has a potential in AI-assisted SE prediction. However, it should be noted that, the proposed model highly depends on the sufficient clinic data, and hereby, much deeper exploration is important for enhancing the accuracy of the prediction

    Learning signals of adverse drug-drug interactions from the unstructured text of electronic health records.

    Get PDF
    Drug-drug interactions (DDI) account for 30% of all adverse drug reactions, which are the fourth leading cause of death in the US. Current methods for post marketing surveillance primarily use spontaneous reporting systems for learning DDI signals and validate their signals using the structured portions of Electronic Health Records (EHRs). We demonstrate a fast, annotation-based approach, which uses standard odds ratios for identifying signals of DDIs from the textual portion of EHRs directly and which, to our knowledge, is the first effort of its kind. We developed a gold standard of 1,120 DDIs spanning 14 adverse events and 1,164 drugs. Our evaluations on this gold standard using millions of clinical notes from the Stanford Hospital confirm that identifying DDI signals from clinical text is feasible (AUROC=81.5%). We conclude that the text in EHRs contain valuable information for learning DDI signals and has enormous utility in drug surveillance and clinical decision support

    Comprehensive evaluation of deep and graph learning on drug-drug interactions prediction

    Full text link
    Recent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established their usefulness in biomedical applications, especially in drug-drug interactions (DDIs). DDIs refer to a change in the effect of one drug to the presence of another drug in the human body, which plays an essential role in drug discovery and clinical research. DDIs prediction through traditional clinical trials and experiments is an expensive and time-consuming process. To correctly apply the advanced AI and deep learning, the developer and user meet various challenges such as the availability and encoding of data resources, and the design of computational methods. This review summarizes chemical structure based, network based, NLP based and hybrid methods, providing an updated and accessible guide to the broad researchers and development community with different domain knowledge. We introduce widely-used molecular representation and describe the theoretical frameworks of graph neural network models for representing molecular structures. We present the advantages and disadvantages of deep and graph learning methods by performing comparative experiments. We discuss the potential technical challenges and highlight future directions of deep and graph learning models for accelerating DDIs prediction.Comment: Accepted by Briefings in Bioinformatic

    HyGNN: Drug-Drug Interaction Prediction via Hypergraph Neural Network

    Full text link
    Drug-Drug Interactions (DDIs) may hamper the functionalities of drugs, and in the worst scenario, they may lead to adverse drug reactions (ADRs). Predicting all DDIs is a challenging and critical problem. Most existing computational models integrate drug-centric information from different sources and leverage them as features in machine learning classifiers to predict DDIs. However, these models have a high chance of failure, especially for the new drugs when all the information is not available. This paper proposes a novel Hypergraph Neural Network (HyGNN) model based on only the SMILES string of drugs, available for any drug, for the DDI prediction problem. To capture the drug similarities, we create a hypergraph from drugs' chemical substructures extracted from the SMILES strings. Then, we develop HyGNN consisting of a novel attention-based hypergraph edge encoder to get the representation of drugs as hyperedges and a decoder to predict the interactions between drug pairs. Furthermore, we conduct extensive experiments to evaluate our model and compare it with several state-of-the-art methods. Experimental results demonstrate that our proposed HyGNN model effectively predicts DDIs and impressively outperforms the baselines with a maximum ROC-AUC and PR-AUC of 97.9% and 98.1%, respectively.Comment: Some new experiments have been added. One more dataset has been considered. Theoretical part has been updated to
    corecore