1,556,053 research outputs found
CPAS Preflight Drop Test Analysis Process
Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests
Water jet/spray measurement analysis
The objective of this study was to provide analysis of data obtained under a previous contract entitled Characterization of Drop Spectra from High Volume Flow Water Jets. Measurements of drop spectra were obtained in the spray resulting from the breakup of high volume flow water jets from a variety of nozzle types. The drop spectra measurements were obtained from two drop spectrometers covering a range from 10 microns to 12 millimeters diameter. The task addressed was to select representative spectra from the individual tests and provide analyses in both numerical and graphical formats as outlined in the proposal. The intended application of these results is an evaluation of the feasibility of fog clearing by high volume water sprays. During the tests, a fog event occurred making it possible to test the concept of fog clearing. Visual range data and fog drop spectra were analyzed, with particular emphasis placed on the modification of these parameters due to the water spray
Water impact analysis of space shuttle solid rocket motor by the finite element method
Preliminary analysis showed that the doubly curved triangular shell elements were too stiff for these shell structures. The doubly curved quadrilateral shell elements were found to give much improved results. A total of six load cases were analyzed in this study. The load cases were either those resulting from a static test using reaction straps to simulate the drop conditions or under assumed hydrodynamic conditions resulting from a drop test. The latter hydrodynamic conditions were obtained through an emperical fit of available data. Results obtained from a linear analysis were found to be consistent with results obtained elsewhere with NASTRAN and BOSOR. The nonlinear analysis showed that the originally assumed loads would result in failure of the shell structures. The nonlinear analysis also showed that it was useful to apply internal pressure as a stabilizing influence on collapse. A final analysis with an updated estimate of load conditions resulted in linear behavior up to full load
Investigation of new radar-data-reduction techniques used to determine drag characteristics of a free-flight vehicle
An investigation was conducted of new techniques used to determine the complete transonic drag characteristics of a series of free-flight drop-test models using principally radar tracking data. The full capabilities of the radar tracking and meteorological measurement systems were utilized. In addition, preflight trajectory design, exact kinematic equations, and visual-analytical filtering procedures were employed. The results of this study were compared with the results obtained from analysis of the onboard, accelerometer and pressure sensor data of the only drop-test model that was instrumented. The accelerometer-pressure drag curve was approximated by the radar-data drag curve. However, a small amplitude oscillation on the latter curve precluded a precise definition of its drag rise
Orbiter thermal pressure drop characteristics for shuttle orbiter thermal protection system components: High density tile, low density tile, densified low density tile, and strain isolation pad
Pressure drop tests were conducted on available samples of low and high density tile, densified low density tile, and strain isolation pads. The results are presented in terms of pressure drop, material thickness and volume flow rate. Although the test apparatus was only capable of a small part of the range of conditions to be encountered in a Shuttle Orbiter flight, the data serve to determine the type of flow characteristics to be expected for each material type tested; the measured quantities also should serve as input for initial venting and flow through analysis
Effect of model selection on combustor performance and stability predictions using ROCCID
The ROCket Combustor Interactive Design (ROCCID) methodology is an interactive computer program that combines previously developed combustion analysis models to calculate the combustion performance and stability of liquid rocket engines. Test data from 213 kN (48,000 lbf) Liquid Oxygen (LOX)/RP-1 combustor with an O-F-O (oxidizer-fuel-oxidizer) triplet injector were used to characterize the predictive capabilities of the ROCCID analysis models for this injector/propellant configuration. Thirteen combustion performance and stability models were incorporated into ROCCID, and ten of them, which have options for triplet injectors, were examined. Calculations using different combinations of analysis models, with little or no anchoring, were carried out on a test matrix of operating combinations matching those of the test program. Results of the computer analyses were compared to test data, and the ability of the model combinations to correctly predict combustion stability or instability was determined. For the best model combination(s), sensitivity of the calculations to fuel drop size and mixing efficiency was examined. Error in the stability calculations due to uncertainty in the pressure interaction index (N) was examined. The recommended model combinations for this O-F-O triplet LOX/RP-1 configuration are proposed
A fast and accurate per-cell dynamic IR-drop estimation method for at-speed scan test pattern validation
ITC : 2012 IEEE International Test Conference , 5-8 Nov. 2012 , Anaheim, CA, USAIn return for increased operating frequency and reduced supply voltage in nano-scale designs, their vulnerability to IR-drop-induced yield loss grew increasingly apparent. Therefore, it is necessary to consider delay increase effect due to IR-drop during at-speed scan testing. However, it consumes significant amounts of time for precise IR-drop analysis. This paper addresses this issue with a novel per-cell dynamic IR-drop estimation method. Instead of performing time-consuming IR-drop analysis for each pattern one by one, the proposed method uses global cycle average power profile for each pattern and dynamic IR-drop profiles for a few representative patterns, thus total computation time is effectively reduced. Experimental results on benchmark circuits demonstrate that the proposed method achieves both high accuracy and high time-efficiency
Do stiffness and asymmetries predict change of direction performance?
Change of direction speed (CODS) underpins performance in a wide range of sports but little is known about how stiffness and asymmetries affect CODS. Eighteen healthy males performed unilateral drop jumps to determine vertical, ankle, knee and hip stiffness, and a CODS test to evaluate left and right leg cutting performance during which ground reaction force data were sampled. A step-wise regression analysis was performed to ascertain the determinants of CODS time. A two-variable regression model explained 63% (R-2 = 0.63; P = 0.001) of CODS performance. The model included the mean vertical stiffness and jump height asymmetry determined during the drop jump. Faster athletes (n = 9) exhibited greater vertical stiffness (F = 12.40; P = 0.001) and less asymmetry in drop jump height (F = 6.02; P = 0.026) than slower athletes (n = 9); effect sizes were both "large" in magnitude. Results suggest that overall vertical stiffness and drop jump height asymmetry are the strongest predictors of CODS in a healthy, non-athletic population
Three-Dimensional Navier-Stokes Simulation of Space Shuttle Main Propulsion 17-inch Disconnect Valves
A steady incompressible three-dimensional viscous flow analysis has been conducted for the Space Shuttle external tank/orbiter propellant feed line disconnect flapper valves with upstream elbows. The Navier-Stokes code, INS3D, is modified to handle interior obstacles and a simple turbulence model. The flow solver is tested for stability and convergence in the presence of interior flappers. An under-relaxation scheme has been incorporated to improve the solution stability. Important flow characteristics such as secondary flows, recirculation, vortex and wake regions, and separated flows are observed. Computed values for forces, moments, and pressure drop are in satisfactory agreement with water flow test data covering a maximum tube Reynolds number of 3.5 million. The predicted hydrodynamical stability of the flappers correlates well with the measurements
- …
