12,100 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Vision-Based Lane-Changing Behavior Detection Using Deep Residual Neural Network

    Get PDF
    Accurate lane localization and lane change detection are crucial in advanced driver assistance systems and autonomous driving systems for safer and more efficient trajectory planning. Conventional localization devices such as Global Positioning System only provide road-level resolution for car navigation, which is incompetent to assist in lane-level decision making. The state of art technique for lane localization is to use Light Detection and Ranging sensors to correct the global localization error and achieve centimeter-level accuracy, but the real-time implementation and popularization for LiDAR is still limited by its computational burden and current cost. As a cost-effective alternative, vision-based lane change detection has been highly regarded for affordable autonomous vehicles to support lane-level localization. A deep learning-based computer vision system is developed to detect the lane change behavior using the images captured by a front-view camera mounted on the vehicle and data from the inertial measurement unit for highway driving. Testing results on real-world driving data have shown that the proposed method is robust with real-time working ability and could achieve around 87% lane change detection accuracy. Compared to the average human reaction to visual stimuli, the proposed computer vision system works 9 times faster, which makes it capable of helping make life-saving decisions in time

    The State-of-the-art of Coordinated Ramp Control with Mixed Traffic Conditions

    Get PDF
    Ramp metering, a traditional traffic control strategy for conventional vehicles, has been widely deployed around the world since the 1960s. On the other hand, the last decade has witnessed significant advances in connected and automated vehicle (CAV) technology and its great potential for improving safety, mobility and environmental sustainability. Therefore, a large amount of research has been conducted on cooperative ramp merging for CAVs only. However, it is expected that the phase of mixed traffic, namely the coexistence of both human-driven vehicles and CAVs, would last for a long time. Since there is little research on the system-wide ramp control with mixed traffic conditions, the paper aims to close this gap by proposing an innovative system architecture and reviewing the state-of-the-art studies on the key components of the proposed system. These components include traffic state estimation, ramp metering, driving behavior modeling, and coordination of CAVs. All reviewed literature plot an extensive landscape for the proposed system-wide coordinated ramp control with mixed traffic conditions.Comment: 8 pages, 1 figure, IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE - ITSC 201

    Lost in Time: Temporal Analytics for Long-Term Video Surveillance

    Full text link
    Video surveillance is a well researched area of study with substantial work done in the aspects of object detection, tracking and behavior analysis. With the abundance of video data captured over a long period of time, we can understand patterns in human behavior and scene dynamics through data-driven temporal analytics. In this work, we propose two schemes to perform descriptive and predictive analytics on long-term video surveillance data. We generate heatmap and footmap visualizations to describe spatially pooled trajectory patterns with respect to time and location. We also present two approaches for anomaly prediction at the day-level granularity: a trajectory-based statistical approach, and a time-series based approach. Experimentation with one year data from a single camera demonstrates the ability to uncover interesting insights about the scene and to predict anomalies reasonably well.Comment: To Appear in Springer LNE

    Drunk Driving Legislation and Traffic Fatalities: What Works and What Doesn’t?

    Get PDF
    This paper re-examines the effectiveness of Blood Alcohol Content (BAC) and Administrative License Revocation (ALR) laws in reducing traffic fatalities. Using difference-in-differences estimators of U.S. state-level data with standard errors corrected for autocorrelation, we find no evidence that lowering BAC limits to 0.08 grams/decaliter has reduced fatality rates, either in total or in alcohol-related crashes. On the other hand, ALR is found to be an effective in reducing fatalities in all specifications. Endogeneity tests using event analyses indicate temporal causality of ALR laws.

    SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for Autonomous Driving

    Full text link
    Autonomous driving confronts great challenges in complex traffic scenarios, where the risk of Safety of the Intended Functionality (SOTIF) can be triggered by the dynamic operational environment and system insufficiencies. The SOTIF risk is reflected not only intuitively in the collision risk with objects outside the autonomous vehicles (AVs), but also inherently in the performance limitation risk of the implemented algorithms themselves. How to minimize the SOTIF risk for autonomous driving is currently a critical, difficult, and unresolved issue. Therefore, this paper proposes the "Self-Surveillance and Self-Adaption System" as a systematic approach to online minimize the SOTIF risk, which aims to provide a systematic solution for monitoring, quantification, and mitigation of inherent and external risks. The core of this system is the risk monitoring of the implemented artificial intelligence algorithms within the AV. As a demonstration of the Self-Surveillance and Self-Adaption System, the risk monitoring of the perception algorithm, i.e., YOLOv5 is highlighted. Moreover, the inherent perception algorithm risk and external collision risk are jointly quantified via SOTIF entropy, which is then propagated downstream to the decision-making module and mitigated. Finally, several challenging scenarios are demonstrated, and the Hardware-in-the-Loop experiments are conducted to verify the efficiency and effectiveness of the system. The results demonstrate that the Self-Surveillance and Self-Adaption System enables dependable online monitoring, quantification, and mitigation of SOTIF risk in real-time critical traffic environments.Comment: 16 pages, 10 figures, 2 tables, submitted to IEEE TIT
    • …
    corecore