37,737 research outputs found

    Driving Cycle Equivalence and Transformation

    Full text link

    Quantum Equivalence and Quantum Signatures in Heat Engines

    Full text link
    Quantum heat engines (QHE) are thermal machines where the working substance is quantum. In the extreme case the working medium can be a single particle or a few level quantum system. The study of QHE has shown a remarkable similarity with the standard thermodynamical models, thus raising the issue what is quantum in quantum thermodynamics. Our main result is thermodynamical equivalence of all engine type in the quantum regime of small action. They have the same power, the same heat, the same efficiency, and they even have the same relaxation rates and relaxation modes. Furthermore, it is shown that QHE have quantum-thermodynamic signature, i.e thermodynamic measurements can confirm the presence of quantum coherence in the device. The coherent work extraction mechanism enables power outputs that greatly exceed the power of stochastic (dephased) engines.Comment: v2 contains style and figures improvements. Subsection III.D was adde

    Experimental demonstration of quantum effects in the operation of microscopic heat engines

    Full text link
    The heat engine, a machine that extracts useful work from thermal sources, is one of the basic theoretical constructs and fundamental applications of classical thermodynamics. The classical description of a heat engine does not include coherence in its microscopic degrees of freedom. By contrast, a quantum heat engine might possess coherence between its internal states. Although the Carnot efficiency cannot be surpassed, and coherence can be performance degrading in certain conditions, it was recently predicted that even when using only thermal resources, internal coherence can enable a quantum heat engine to produce more power than any classical heat engine using the same resources. Such a power boost therefore constitutes a quantum thermodynamic signature. It has also been shown that the presence of coherence results in the thermodynamic equivalence of different quantum heat engine types, an effect with no classical counterpart. Microscopic heat machines have been recently implemented with trapped ions, and proposals for heat machines using superconducting circuits and optomechanics have been made. When operated with standard thermal baths, however, the machines implemented so far have not demonstrated any inherently quantum feature in their thermodynamic quantities. Here we implement two types of quantum heat engines by use of an ensemble of nitrogen-vacancy centres in diamond, and experimentally demonstrate both the coherence power boost and the equivalence of different heat-engine types. This constitutes the first observation of quantum thermodynamic signatures in heat machines

    Swift heat transfer by fast-forward driving in open quantum systems

    Full text link
    Typically, time-dependent thermodynamic protocols need to run asymptotically slowly in order to avoid dissipative losses. By adapting ideas from counter-diabatic driving and Floquet engineering to open systems, we develop fast-forward protocols for swiftly thermalizing a system oscillator locally coupled to an optical phonon bath. These protocols control the system frequency and the system-bath coupling to induce a resonant state exchange between the system and the bath. We apply the fast-forward protocols to realize a fast approximate Otto engine operating at high power near the Carnot Efficiency. Our results suggest design principles for swift cooling protocols in coupled many-body systems.Comment: 16 pages, 10 figure

    Nonequilibrium thermodynamics as a gauge theory

    Get PDF
    We assume that markovian dynamics on a finite graph enjoys a gauge symmetry under local scalings of the probability density, derive the transformation law for the transition rates and interpret the thermodynamic force as a gauge potential. A widely accepted expression for the total entropy production of a system arises as the simplest gauge-invariant completion of the time derivative of Gibbs's entropy. We show that transition rates can be given a simple physical characterization in terms of locally-detailed-balanced heat reservoirs. It follows that Clausius's measure of irreversibility along a cyclic transformation is a geometric phase. In this picture, the gauge symmetry arises as the arbitrariness in the choice of a prior probability. Thermostatics depends on the information that is disposable to an observer; thermodynamics does not.Comment: 6 pages. Non-fatal errors in eq.(6), eq.(26) and eq.(31) have been amende

    Stability of Spatio-Temporal Structures in a Lattice Model of Pulse-Coupled Oscillators

    Full text link
    We analyze the collective behavior of a lattice model of pulse-coupled oscillators. By studying the intrinsic dynamics of each member of the population and their mutual interactions we observe the emergence of either spatio-temporal structures or synchronized regimes. We perform a linear stability analysis of these structures.Comment: 15 pages, 2 PostScript available upon request at [email protected], Accepted in Physica
    • …
    corecore