35,621 research outputs found

    A Stochastic Hybrid Framework for Driver Behavior Modeling Based on Hierarchical Dirichlet Process

    Full text link
    Scalability is one of the major issues for real-world Vehicle-to-Vehicle network realization. To tackle this challenge, a stochastic hybrid modeling framework based on a non-parametric Bayesian inference method, i.e., hierarchical Dirichlet process (HDP), is investigated in this paper. This framework is able to jointly model driver/vehicle behavior through forecasting the vehicle dynamical time-series. This modeling framework could be merged with the notion of model-based information networking, which is recently proposed in the vehicular literature, to overcome the scalability challenges in dense vehicular networks via broadcasting the behavioral models instead of raw information dissemination. This modeling approach has been applied on several scenarios from the realistic Safety Pilot Model Deployment (SPMD) driving data set and the results show a higher performance of this model in comparison with the zero-hold method as the baseline.Comment: This is the accepted version of the paper in 2018 IEEE 88th Vehicular Technology Conference (VTC2018-Fall) (references added, title and abstract modified

    Multi-Object Tracking with Interacting Vehicles and Road Map Information

    Full text link
    In many applications, tracking of multiple objects is crucial for a perception of the current environment. Most of the present multi-object tracking algorithms assume that objects move independently regarding other dynamic objects as well as the static environment. Since in many traffic situations objects interact with each other and in addition there are restrictions due to drivable areas, the assumption of an independent object motion is not fulfilled. This paper proposes an approach adapting a multi-object tracking system to model interaction between vehicles, and the current road geometry. Therefore, the prediction step of a Labeled Multi-Bernoulli filter is extended to facilitate modeling interaction between objects using the Intelligent Driver Model. Furthermore, to consider road map information, an approximation of a highly precise road map is used. The results show that in scenarios where the assumption of a standard motion model is violated, the tracking system adapted with the proposed method achieves higher accuracy and robustness in its track estimations

    Modeling Pipeline Driving Behaviors: A Hidden Markov Model Approach

    Get PDF
    Driving behaviors at intersection are complex because drivers have to perceive more traffic events than normal road driving and thus are exposed to more errors with safety consequences. Drivers make real-time responsesin a stochastic manner. This paper presents our study using Hidden Markov Models (HMM) to model driving behaviors at intersections. Observed vehicle movement data are used to build up the model. A single HMM is used to cluster the vehicle movements when they are close to intersection. The re-estimated clustered HMMs provide better prediction of the vehicle movements compared to traditional car-following models. Only through vehicles on major roads are considered in this paper.
    corecore