40,331 research outputs found

    A martingale analysis of first passage times of time-dependent Wiener diffusion models

    Full text link
    Research in psychology and neuroscience has successfully modeled decision making as a process of noisy evidence accumulation to a decision bound. While there are several variants and implementations of this idea, the majority of these models make use of a noisy accumulation between two absorbing boundaries. A common assumption of these models is that decision parameters, e.g., the rate of accumulation (drift rate), remain fixed over the course of a decision, allowing the derivation of analytic formulas for the probabilities of hitting the upper or lower decision threshold, and the mean decision time. There is reason to believe, however, that many types of behavior would be better described by a model in which the parameters were allowed to vary over the course of the decision process. In this paper, we use martingale theory to derive formulas for the mean decision time, hitting probabilities, and first passage time (FPT) densities of a Wiener process with time-varying drift between two time-varying absorbing boundaries. This model was first studied by Ratcliff (1980) in the two-stage form, and here we consider the same model for an arbitrary number of stages (i.e. intervals of time during which parameters are constant). Our calculations enable direct computation of mean decision times and hitting probabilities for the associated multistage process. We also provide a review of how martingale theory may be used to analyze similar models employing Wiener processes by re-deriving some classical results. In concert with a variety of numerical tools already available, the current derivations should encourage mathematical analysis of more complex models of decision making with time-varying evidence

    A central limit theorem for products of random matrices and GOE statistics for the Anderson model on long boxes

    Get PDF
    We consider products of random matrices that are small, independent identically distributed perturbations of a fixed matrix T0T_0. Focusing on the eigenvalues of T0T_0 of a particular size we obtain a limit to a SDE in a critical scaling. Previous results required T0T_0 to be a (conjugated) unitary matrix so it could not have eigenvalues of different modulus. From the result we can also obtain a limit SDE for the Markov process given by the action of the random products on the flag manifold. Applying the result to random Schr\"odinger operators we can improve some result by Valko and Virag showing GOE statistics for the rescaled eigenvalue process of a sequence of Anderson models on long boxes. In particular we solve a problem posed in their work.Comment: new version, parts rearrange

    Poisson's equation for discrete-time quasi-birth-and-death processes

    Full text link
    We consider Poisson's equation for quasi-birth-and-death processes (QBDs) and we exploit the special transition structure of QBDs to obtain its solutions in two different forms. One is based on a decomposition through first passage times to lower levels, the other is based on a recursive expression for the deviation matrix. We revisit the link between a solution of Poisson's equation and perturbation analysis and we show that it applies to QBDs. We conclude with the PH/M/1 queue as an illustrative example, and we measure the sensitivity of the expected queue size to the initial value

    Large-time behavior in non-symmetric Fokker-Planck equations

    Full text link
    We consider three classes of linear non-symmetric Fokker-Planck equations having a unique steady state and establish exponential convergence of solutions towards the steady state with explicit (estimates of) decay rates. First, "hypocoercive" Fokker-Planck equations are degenerate parabolic equations such that the entropy method to study large-time behavior of solutions has to be modified. We review a recent modified entropy method (for non-symmetric Fokker-Planck equations with drift terms that are linear in the position variable). Second, kinetic Fokker-Planck equations with non-quadratic potentials are another example of non-symmetric Fokker-Planck equations. Their drift term is nonlinear in the position variable. In case of potentials with bounded second-order derivatives, the modified entropy method allows to prove exponential convergence of solutions to the steady state. In this application of the modified entropy method symmetric positive definite matrices solving a matrix inequality are needed. We determine all such matrices achieving the optimal decay rate in the modified entropy method. In this way we prove the optimality of previous results. Third, we discuss the spectral properties of Fokker-Planck operators perturbed with convolution operators. For the corresponding Fokker-Planck equation we show existence and uniqueness of a stationary solution. Then, exponential convergence of all solutions towards the stationary solution is proven with an uniform rate

    Space-charge distortion of transverse profiles measured by electron-based Ionization Profile Monitors and correction methods

    Full text link
    Measurements of transverse profiles using Ionization Profile Monitors (IPMs) for high brightness beams are affected by the electromagnetic field of the beam. This interaction may cause a distortion of the measured profile shape despite strong external magnetic field applied to impose limits on the transverse movement of electrons. The mechanisms leading to this distortion are discussed in detail. The distortion itself is described by means of analytic calculations for simplified beam distributions and a full simulation model for realistic distributions. Simple relation for minimum magnetic field scaling with beam parameters for avoiding profile distortions is presented. Further, application of machine learning algorithms to the problem of reconstructing the actual beam profile from distorted measured profile is presented. The obtained results show good agreement for tests on simulation data. The performance of these algorithms indicate that they could be very useful for operations of IPMs on high brightness beams or IPMs with weak magnetic field
    • …
    corecore