47,703 research outputs found

    Drawing the double circle on a grid of minimum size

    Get PDF
    In 1926, Jarník introduced the problem of drawing a convex n-gon with vertices having integer coordinates. He constructed such a drawing in the grid [1, c ·n 3/2]2 for some constant c > 0, and showed that this grid size is optimal up to a constant factor. We consider the analogous problem of drawing the double circle, and prove that it can be done within the same grid size. Moreover, we give an O(n log n)-time algorithm to construct such a point set.Consejo Nacional de Ciencia y Tecnologia (México)Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (Universidad Nacional Autónoma de México)Comisión Nacional de Investigación Científica y Tecnológica (Chile)Fondo Nacional de Desarrollo Científico y Tecnológico (Chile

    Grid-Obstacle Representations with Connections to Staircase Guarding

    Full text link
    In this paper, we study grid-obstacle representations of graphs where we assign grid-points to vertices and define obstacles such that an edge exists if and only if an xyxy-monotone grid path connects the two endpoints without hitting an obstacle or another vertex. It was previously argued that all planar graphs have a grid-obstacle representation in 2D, and all graphs have a grid-obstacle representation in 3D. In this paper, we show that such constructions are possible with significantly smaller grid-size than previously achieved. Then we study the variant where vertices are not blocking, and show that then grid-obstacle representations exist for bipartite graphs. The latter has applications in so-called staircase guarding of orthogonal polygons; using our grid-obstacle representations, we show that staircase guarding is \textsc{NP}-hard in 2D.Comment: To appear in the proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Drawing the Horton Set in an Integer Grid of Minimum Size

    Full text link
    In 1978 Erd\H os asked if every sufficiently large set of points in general position in the plane contains the vertices of a convex kk-gon, with the additional property that no other point of the set lies in its interior. Shortly after, Horton provided a construction---which is now called the Horton set---with no such 77-gon. In this paper we show that the Horton set of nn points can be realized with integer coordinates of absolute value at most 12n12log(n/2)\frac{1}{2} n^{\frac{1}{2} \log (n/2)}. We also show that any set of points with integer coordinates combinatorially equivalent (with the same order type) to the Horton set, contains a point with a coordinate of absolute value at least cn124log(n/2)c \cdot n^{\frac{1}{24}\log (n/2)}, where cc is a positive constant

    Flip Distance Between Triangulations of a Simple Polygon is NP-Complete

    Full text link
    Let T be a triangulation of a simple polygon. A flip in T is the operation of removing one diagonal of T and adding a different one such that the resulting graph is again a triangulation. The flip distance between two triangulations is the smallest number of flips required to transform one triangulation into the other. For the special case of convex polygons, the problem of determining the shortest flip distance between two triangulations is equivalent to determining the rotation distance between two binary trees, a central problem which is still open after over 25 years of intensive study. We show that computing the flip distance between two triangulations of a simple polygon is NP-complete. This complements a recent result that shows APX-hardness of determining the flip distance between two triangulations of a planar point set.Comment: Accepted versio

    Graphic arts techniques and equipment - A compilation

    Get PDF
    Summary descriptions of NASA graphic arts techniques and equipmen

    On Upward Drawings of Trees on a Given Grid

    Full text link
    Computing a minimum-area planar straight-line drawing of a graph is known to be NP-hard for planar graphs, even when restricted to outerplanar graphs. However, the complexity question is open for trees. Only a few hardness results are known for straight-line drawings of trees under various restrictions such as edge length or slope constraints. On the other hand, there exist polynomial-time algorithms for computing minimum-width (resp., minimum-height) upward drawings of trees, where the height (resp., width) is unbounded. In this paper we take a major step in understanding the complexity of the area minimization problem for strictly-upward drawings of trees, which is one of the most common styles for drawing rooted trees. We prove that given a rooted tree TT and a W×HW\times H grid, it is NP-hard to decide whether TT admits a strictly-upward (unordered) drawing in the given grid.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    corecore