5,061 research outputs found

    Drawing planar graphs with prescribed face areas

    Get PDF
    This thesis deals with planar drawings of planar graphs such that each interior face has a prescribed area. Our work is divided into two main sections. The rst one deals with straight-line drawings and the second one with orthogonal drawings. For straight-line drawings, it was known that such drawings exist for all planar graphs with maximum degree 3. We show here that such drawings exist for all planar partial 3-trees, i.e., subgraphs of a triangulated planar graph obtained by repeatedly inserting a vertex in one triangle and connecting it to all vertices of the triangle. Moreover, vertices have rational coordinates if the face areas are rational, and we can bound the resolution. For orthogonal drawings, we give an algorithm to draw triconnected planar graphs with maximum degree 3. This algorithm produces a drawing with at most 8 bends per face and 4 bends per edge, which improves the previous known result of 34 bends per face. Both vertices and bends have rational coordinates if the face areas are rational

    Two-Page Book Embeddings of 4-Planar Graphs

    Get PDF
    Back in the Eighties, Heath showed that every 3-planar graph is subhamiltonian and asked whether this result can be extended to a class of graphs of degree greater than three. In this paper we affirmatively answer this question for the class of 4-planar graphs. Our contribution consists of two algorithms: The first one is limited to triconnected graphs, but runs in linear time and uses existing methods for computing hamiltonian cycles in planar graphs. The second one, which solves the general case of the problem, is a quadratic-time algorithm based on the book-embedding viewpoint of the problem.Comment: 21 pages, 16 Figures. A shorter version is to appear at STACS 201

    Transversal structures on triangulations: a combinatorial study and straight-line drawings

    Get PDF
    This article focuses on a combinatorial structure specific to triangulated plane graphs with quadrangular outer face and no separating triangle, which are called irreducible triangulations. The structure has been introduced by Xin He under the name of regular edge-labelling and consists of two bipolar orientations that are transversal. For this reason, the terminology used here is that of transversal structures. The main results obtained in the article are a bijection between irreducible triangulations and ternary trees, and a straight-line drawing algorithm for irreducible triangulations. For a random irreducible triangulation with nn vertices, the grid size of the drawing is asymptotically with high probability 11n/27×11n/2711n/27\times 11n/27 up to an additive error of \cO(\sqrt{n}). In contrast, the best previously known algorithm for these triangulations only guarantees a grid size (⌈n/2⌉−1)×⌊n/2⌋(\lceil n/2\rceil -1)\times \lfloor n/2\rfloor.Comment: 42 pages, the second version is shorter, focusing on the bijection (with application to counting) and on the graph drawing algorithm. The title has been slightly change
    • …
    corecore