3 research outputs found

    Doctor2Vec: Dynamic Doctor Representation Learning for Clinical Trial Recruitment

    Full text link
    Massive electronic health records (EHRs) enable the success of learning accurate patient representations to support various predictive health applications. In contrast, doctor representation was not well studied despite that doctors play pivotal roles in healthcare. How to construct the right doctor representations? How to use doctor representation to solve important health analytic problems? In this work, we study the problem on {\it clinical trial recruitment}, which is about identifying the right doctors to help conduct the trials based on the trial description and patient EHR data of those doctors. We propose doctor2vec which simultaneously learns 1) doctor representations from EHR data and 2) trial representations from the description and categorical information about the trials. In particular, doctor2vec utilizes a dynamic memory network where the doctor's experience with patients are stored in the memory bank and the network will dynamically assign weights based on the trial representation via an attention mechanism. Validated on large real-world trials and EHR data including 2,609 trials, 25K doctors and 430K patients, doctor2vec demonstrated improved performance over the best baseline by up to 8.7%8.7\% in PR-AUC. We also demonstrated that the doctor2vec embedding can be transferred to benefit data insufficiency settings including trial recruitment in less populated/newly explored country with 13.7%13.7\% improvement or for rare diseases with 8.1%8.1\% improvement in PR-AUC.Comment: Accepted by AAAI 202

    Dr. Right!: Embedding-Based Adaptively-Weighted Mixture Multi-Classification Model for Finding Right Doctors with Healthcare Experience Data

    No full text
    Finding a right doctor with suitable expertise that meets one\u27s health needs is important yet challenging. In this paper, we study the problem of finding high-rated doctors for a specific disease using imbalanced and heterogeneous healthcare experience rating data. We develop a data analytical framework, namely Dr. Right!, which incorporates the so-called network-textual embeddings, together with data-imbalance-aware mixture multi-classification models to rate doctors per specific disease. First, Dr. Right! collects the comments and rating records from patients for doctors on specific diseases from an online hospital and constructs a doctor-patient-disease network, where every edge weight is a pairwise average rating (experience score) among doctors, patients, and diseases. Then, Dr. Right! learns the embeddings of patient experiences from textual comments using the Word2Vec, as well as the embeddings of doctors and diseases from the doctor-patient-disease network via the Node2Vec. The two types of embeddings are fused to represent a doctor-patient pair. With the embedding representations of doctor-patient pairs, Dr. Right! learns an adaptively-weighted mixture multi-classification model to map a doctor-disease pair to an experience rating score, while addressing the challenges of data imbalance and group heterogeneity. Finally, extensive experimental results demonstrate the enhanced performances of Dr. Right! for predicting the disease-specific experience scores of doctors

    DEEP LEARNING METHODS FOR MULTI-MODAL HEALTHCARE DATA

    Get PDF
    Abstract: Today, enormous transformations are happening in health care research and applications. In the past few years, there has been exponential growth in the amount of healthcare data generated from multiple sources. This growth in data has led to many new possibilities and opportunities for researchers to build different models and analytics for improving healthcare for patients. While there has been an increase in research and successful application of prediction and classification tasks, there are many other challenges in improving overall healthcare. Some of these challenges include optimizing physician performance, reducing healthcare costs, and discovering new treatments for diseases. - Often, doctors have to perform many time-consuming tasks, which leads to fatigue and misdiagnosis. Many of these tasks could be automated to save time and release doctors from menial tasks enabling them to spend more time improving the quality of care. - Health dataset contains multiple modalities such as structured sequence, unstructured text, images, ECG, and EEG signals. Successful application of machine learning requires methods to utilize these diverse data sources. - Finally, current healthcare is limited by the treatments available on the market. Often, many treatments do not make it beyond clinical trials, which leads to a lot of lost opportunities. It is possible to improve the outcome of clinical trials and ultimately improve the quality of treatment for the patients with machine learning models for different clinical trial-related tasks. In this dissertation, we address these challenges by - Predictive Models: Building deep learning models for sleep clinics to save time and effort needed by doctors for sleep staging, apnea, limb movement detection - Generative Models: Developing multimodal deep learning systems that can produce text reports and augment doctors in clinical practice. - Interpretable Representation Models: Applying multimodal models to help in clinical trial recruitment and counterfactual explanations for clinical trial outcome predictions to improve clinical trial success.Ph.D
    corecore