809,321 research outputs found
Electromagnetic field generation in the downstream of electrostatic shocks due to electron trapping
A new magnetic field generation mechanism in electrostatic shocks is found,
which can produce fields with magnetic energy density as high as 0.01 of the
kinetic energy density of the flows on time scales . Electron trapping during the shock formation process
creates a strong temperature anisotropy in the distribution function, giving
rise to the pure Weibel instability. The generated magnetic field is
well-confined to the downstream region of the electrostatic shock. The shock
formation process is not modified and the features of the shock front
responsible for ion acceleration, which are currently probed in laser-plasma
laboratory experiments, are maintained. However, such a strong magnetic field
determines the particle trajectories downstream and has the potential to modify
the signatures of the collisionless shock
Particle Acceleration at High- Shock Waves
First-order Fermi acceleration processes at ultrarelativistic shocks are
studied with Monte Carlo simulations. The accelerated particle spectra are
obtained by integrating the exact particle trajectories in a turbulent magnetic
field near the shock, with a few ``realistic'' features of the field structure
included. We show that the main acceleration process at oblique shocks is the
particle compression at the shock. Formation of energetic spectral tails is
possible in a limited energy range for highly perturbed magnetic fields.
Cut-offs in the spectra occur at low energies in the resonance range
considered. We relate this feature to the structure of the magnetic field
downstream of the shock, where field compression produces effectively 2D
turbulence in which cross-field diffusion is very small. Because of the field
compression downstream, the acceleration process is inefficient also in
parallel high- shocks for larger turbulence amplitudes, and features
observed in oblique shocks are recovered. For small-amplitude perturbations,
particle spectra are formed in a wide energy range and modifications of the
acceleration process due to the existence of long-wave perturbations are
observed. The critical turbulence amplitude for efficient acceleration at
parallel shocks decreases with shock Lorentz factor. We also study the
influence of strong short-wave perturbations downstream of the shock on the
particle acceleration processes. The spectral indices obtained do not converge
to the ``universal'' value . Our results indicate inefficiency of the
first-order Fermi process to generate high-energy cosmic rays at
ultrarelativistic shocks with the considered perturbed magnetic field
structures.Comment: 4 pages, 2 figures, proceedings of the conference "Astrophysical
Sources of High Energy Particles and Radiation" held in Torun, Poland (June
20-24, 2005), to appear in the AIP Proceedings Serie
Recommended from our members
Deconvolute individual genomes from metagenome sequences through short read clustering.
Metagenome assembly from short next-generation sequencing data is a challenging process due to its large scale and computational complexity. Clustering short reads by species before assembly offers a unique opportunity for parallel downstream assembly of genomes with individualized optimization. However, current read clustering methods suffer either false negative (under-clustering) or false positive (over-clustering) problems. Here we extended our previous read clustering software, SpaRC, by exploiting statistics derived from multiple samples in a dataset to reduce the under-clustering problem. Using synthetic and real-world datasets we demonstrated that this method has the potential to cluster almost all of the short reads from genomes with sufficient sequencing coverage. The improved read clustering in turn leads to improved downstream genome assembly quality
Algebraic Watchdog: Mitigating Misbehavior in Wireless Network Coding
We propose a secure scheme for wireless network coding, called the algebraic
watchdog. By enabling nodes to detect malicious behaviors probabilistically and
use overheard messages to police their downstream neighbors locally, the
algebraic watchdog delivers a secure global self-checking network. Unlike
traditional Byzantine detection protocols which are receiver-based, this
protocol gives the senders an active role in checking the node downstream. The
key idea is inspired by Marti et al.'s watchdog-pathrater, which attempts to
detect and mitigate the effects of routing misbehavior.
As an initial building block of a such system, we first focus on a two-hop
network. We present a graphical model to understand the inference process nodes
execute to police their downstream neighbors; as well as to compute, analyze,
and approximate the probabilities of misdetection and false detection. In
addition, we present an algebraic analysis of the performance using an
hypothesis testing framework that provides exact formulae for probabilities of
false detection and misdetection.
We then extend the algebraic watchdog to a more general network setting, and
propose a protocol in which we can establish trust in coded systems in a
distributed manner. We develop a graphical model to detect the presence of an
adversarial node downstream within a general multi-hop network. The structure
of the graphical model (a trellis) lends itself to well-known algorithms, such
as the Viterbi algorithm, which can compute the probabilities of misdetection
and false detection. We show analytically that as long as the min-cut is not
dominated by the Byzantine adversaries, upstream nodes can monitor downstream
neighbors and allow reliable communication with certain probability. Finally,
we present simulation results that support our analysis.Comment: 10 pages, 10 figures, Submitted to IEEE Journal on Selected Areas in
Communications (JSAC) "Advances in Military Networking and Communications
A dimensional analysis of supersaturated total dissolved gas dissipation
Elevated levels of total dissolved gas (TDG) may occur downstream of dam discharges, leading to increased incidence of gas bubble disease in fish. Accelerating the dissipation of supersaturated TDG in the downstream river can mitigate this negative problem. However, developing effective mitigation techniques is hampered by limitations in present models of TDG dissipation processes. Furthermore, data useful for modelling the dissipation of supersaturated TDG through the
free surface in natural rivers are limited. Past studies indicated that the TDG dissipation process is quantitatively different from the reaeration process, and TDG behavior is quantitatively different from dissolved oxygen. However, a correct parameterization of the TDG dissipation process is still missing.
The paper presents a novel dimensional analysis of the dissipation of supersaturated TDG. This approach can provide a relationship between the TDG dissipation coefficient and some classical fluid mechanics index-numbers. This dimensional analysis considers some key parameters for the dissipation process both water and TDG properties as well as flow characteristics, including turbulence. These parameters are water kinematic viscosity, TDG molecular diffusivity and vertical turbulent diffusivity, and channel width. The application of dimensional analysis pointed out that the TDG dissipation coefficient is a function of the Schmidt number, the aspect ratio of the channel, and the shear Reynolds
number. The dimensional analysis was then verified using both field data collected in some large natural rivers and reservoirs in Sichuan and experimental data in laboratory flume at State Key Laboratory of Hydraulics and Mountain River Engineering of Sichuan University. The analysis revealed the key role of turbulence in controlling the TDG dissipation while the importance of gas/water characteristics remains still unclear and needs further investigations
Stochastic Acceleration in Relativistic Parallel Shocks
(abridged) We present results of test-particle simulations on both the first
and the second order Fermi acceleration at relativistic parallel shock waves.
We consider two scenarios for particle injection: (i) particles injected at the
shock front, then accelerated at the shock by the first order mechanism and
subsequently by the stochastic process in the downstream region; and (ii)
particles injected uniformly throughout the downstream region to the stochastic
process. We show that regardless of the injection scenario, depending on the
magnetic field strength, plasma composition, and the employed turbulence model,
the stochastic mechanism can have considerable effects on the particle spectrum
on temporal and spatial scales too short to be resolved in extragalactic jets.
Stochastic acceleration is shown to be able to produce spectra that are
significantly flatter than the limiting case of particle energy spectral index
-1 of the first order mechanism. Our study also reveals a possibility of
re-acceleration of the stochastically accelerated spectrum at the shock, as
particles at high energies become more and more mobile as their mean free path
increases with energy. Our findings suggest that the role of the second order
mechanism in the turbulent downstream of a relativistic shock with respect to
the first order mechanism at the shock front has been underestimated in the
past, and that the second order mechanism may have significant effects on the
form of the particle spectra and its evolution.Comment: 14 pages, 11 figures (9 black/white and 2 color postscripts). To be
published in the ApJ (accepted 6 Nov 2004
- …
