873 research outputs found

    Modeling and Analysis of HetNets with mm-Wave Multi-RAT Small Cells Deployed Along Roads

    Full text link
    We characterize a multi tier network with classical macro cells, and multi radio access technology (RAT) small cells, which are able to operate in microwave and millimeter-wave (mm-wave) bands. The small cells are assumed to be deployed along roads modeled as a Poisson line process. This characterization is more realistic as compared to the classical Poisson point processes typically used in literature. In this context, we derive the association and RAT selection probabilities of the typical user under various system parameters such as the small cell deployment density and mm-wave antenna gain, and with varying street densities. Finally, we calculate the signal to interference plus noise ratio (SINR) coverage probability for the typical user considering a tractable dominant interference based model for mm-wave interference. Our analysis reveals the need of deploying more small cells per street in cities with more streets to maintain coverage, and highlights that mm-wave RAT in small cells can help to improve the SINR performance of the users.Comment: A 7-page version is submitted to IEEE GLOBECOM 201

    Large-scale Spatial Distribution Identification of Base Stations in Cellular Networks

    Full text link
    The performance of cellular system significantly depends on its network topology, where the spatial deployment of base stations (BSs) plays a key role in the downlink scenario. Moreover, cellular networks are undergoing a heterogeneous evolution, which introduces unplanned deployment of smaller BSs, thus complicating the performance evaluation even further. In this paper, based on large amount of real BS locations data, we present a comprehensive analysis on the spatial modeling of cellular network structure. Unlike the related works, we divide the BSs into different subsets according to geographical factor (e.g. urban or rural) and functional type (e.g. macrocells or microcells), and perform detailed spatial analysis to each subset. After examining the accuracy of Poisson point process (PPP) in BS locations modeling, we take into account the Gibbs point processes as well as Neyman-Scott point processes and compare their accuracy in view of large-scale modeling test. Finally, we declare the inaccuracy of the PPP model, and reveal the general clustering nature of BSs deployment, which distinctly violates the traditional assumption. This paper carries out a first large-scale identification regarding available literatures, and provides more realistic and more general results to contribute to the performance analysis for the forthcoming heterogeneous cellular networks

    Two-tier Spatial Modeling of Base Stations in Cellular Networks

    Full text link
    Poisson Point Process (PPP) has been widely adopted as an efficient model for the spatial distribution of base stations (BSs) in cellular networks. However, real BSs deployment are rarely completely random, due to environmental impact on actual site planning. Particularly, for multi-tier heterogeneous cellular networks, operators have to place different BSs according to local coverage and capacity requirement, and the diversity of BSs' functions may result in different spatial patterns on each networking tier. In this paper, we consider a two-tier scenario that consists of macrocell and microcell BSs in cellular networks. By analyzing these two tiers separately and applying both classical statistics and network performance as evaluation metrics, we obtain accurate spatial model of BSs deployment for each tier. Basically, we verify the inaccuracy of using PPP in BS locations modeling for either macrocells or microcells. Specifically, we find that the first tier with macrocell BSs is dispersed and can be precisely modelled by Strauss point process, while Matern cluster process captures the second tier's aggregation nature very well. These statistical models coincide with the inherent properties of macrocell and microcell BSs respectively, thus providing a new perspective in understanding the relationship between spatial structure and operational functions of BSs
    • …
    corecore