2,107 research outputs found

    Double-super-connected digraphs

    Get PDF
    AbstractA strongly connected digraph D is said to be super-connected if every minimum vertex-cut is the out-neighbor or in-neighbor set of a vertex. A strongly connected digraph D is said to be double-super-connected if every minimum vertex-cut is both the out-neighbor set of a vertex and the in-neighbor set of a vertex. In this paper, we characterize the double-super-connected line digraphs, Cartesian product and lexicographic product of two digraphs. Furthermore, we study double-super-connected Abelian Cayley digraphs and illustrate that there exist double-super-connected digraphs for any given order and minimum degree

    Vertex Disjoint Path in Upward Planar Graphs

    Full text link
    The kk-vertex disjoint paths problem is one of the most studied problems in algorithmic graph theory. In 1994, Schrijver proved that the problem can be solved in polynomial time for every fixed kk when restricted to the class of planar digraphs and it was a long standing open question whether it is fixed-parameter tractable (with respect to parameter kk) on this restricted class. Only recently, \cite{CMPP}.\ achieved a major breakthrough and answered the question positively. Despite the importance of this result (and the brilliance of their proof), it is of rather theoretical importance. Their proof technique is both technically extremely involved and also has at least double exponential parameter dependence. Thus, it seems unrealistic that the algorithm could actually be implemented. In this paper, therefore, we study a smaller class of planar digraphs, the class of upward planar digraphs, a well studied class of planar graphs which can be drawn in a plane such that all edges are drawn upwards. We show that on the class of upward planar digraphs the problem (i) remains NP-complete and (ii) the problem is fixed-parameter tractable. While membership in FPT follows immediately from \cite{CMPP}'s general result, our algorithm has only single exponential parameter dependency compared to the double exponential parameter dependence for general planar digraphs. Furthermore, our algorithm can easily be implemented, in contrast to the algorithm in \cite{CMPP}.Comment: 14 page

    Parameterized Algorithms for Directed Maximum Leaf Problems

    Full text link
    We prove that finding a rooted subtree with at least kk leaves in a digraph is a fixed parameter tractable problem. A similar result holds for finding rooted spanning trees with many leaves in digraphs from a wide family L\cal L that includes all strong and acyclic digraphs. This settles completely an open question of Fellows and solves another one for digraphs in L\cal L. Our algorithms are based on the following combinatorial result which can be viewed as a generalization of many results for a `spanning tree with many leaves' in the undirected case, and which is interesting on its own: If a digraph D∈LD\in \cal L of order nn with minimum in-degree at least 3 contains a rooted spanning tree, then DD contains one with at least (n/2)1/5−1(n/2)^{1/5}-1 leaves

    Notes on the connectivity of Cayley coset digraphs

    Full text link
    Hamidoune's connectivity results for hierarchical Cayley digraphs are extended to Cayley coset digraphs and thus to arbitrary vertex transitive digraphs. It is shown that if a Cayley coset digraph can be hierarchically decomposed in a certain way, then it is optimally vertex connected. The results are obtained by extending the methods used by Hamidoune. They are used to show that cycle-prefix graphs are optimally vertex connected. This implies that cycle-prefix graphs have good fault tolerance properties.Comment: 15 page

    Countable connected-homogeneous digraphs

    Full text link
    A digraph is connected-homogeneous if every isomorphism between two finite connected induced subdigraphs extends to an automorphism of the whole digraph. In this paper, we completely classify the countable connected-homogeneous digraphs.Comment: 49 page
    • …
    corecore