312,261 research outputs found

    Liquid-metal heat transfer in a cocurrent- flow, double-pipe heat exchanger is investigated

    Get PDF
    Analysis of liquid-metal heat transfer in cocurrent-flow, double-pipe heat exchangers shows that heat-transfer coefficients depend upon the operating conditions of the heat exchanger and that use of the customary design equation to predict heat-exchanger performance leads to significant errors

    Mitigating performance limitations of single beam-pipe circular e+e- colliders

    Full text link
    Renewed interest in circular e+e- colliders has spurred designs of single beam-pipe machines, like the CEPC in China, and double beam pipe ones, such as the FCC-ee effort at CERN. Single beam-pipe designs profit from lower costs but are limited by the number of bunches that can be accommodated in the machine. We analyse these performance limitations and propose a solution that can accommodate O(1000) bunches while keeping more than 90% of the ring with a single beam pipe.Comment: Poster presented at IPAC'15, Richmond, VA, USA, May 201

    Dynamic response of a double-deck circular tunnel embedded in a full-space

    Get PDF
    © 2016. This version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A three-dimensional dynamic model for calculating the ground-borne vibrations generated by harmonic loads applied on the interior floor of a double-deck circular tunnel is developed. The response of the system is obtained coupling the interior floor subsystem and the tunnel-soil subsystem in the wavenumber-frequency domain. The interior floor is modeled as a thin plate of infinite length in the train circulation direction and the tunnel-soil system is described using the Pipe in Pipe model. Some numerical instabilities of the resulting expressions are overcome by using analytic approximations. The results show that the dynamic behavior of the interior floor clearly influences the magnitude of the coupling loads acting on the tunnel structure. The soil response to a harmonic load acting on the double-deck tunnel is compared to the one obtained for the case of a simple tunnel finding significant differences between them for the whole range of frequencies studied. The proposed model extends the prediction of train-induced vibrations using computationally efficient models to this type of tunnel structure.Peer ReviewedPostprint (author's final draft

    Establishing Load Transfer in Existing Jointed Concrete Pavements, HR-1041, 1985

    Get PDF
    In this paper are described the results of a research project that had the objective of developing construction procedures for restoring load transfer in existing jointed concrete pavements and of evaluating the effectiveness of the restoration methods. A total of 28 test sections with various load transfer devices were placed. The devices include split pipe, figure eight, vee, double vee, and dowel bars. Patching materials used on the project included three types of fast-setting grouts, three brands of polymer concrete, and plain portland cement concrete. The number and spacing of the devices and dowel bars were also variables in the project. Dowel bars and double vee devices were used on the major portion of the project. Performance evaluations were based on deflection tests conducted with a 20,000-lb axle load. Horizontal joint movement measurements and visual observations were also made. The short-term performance data indicate good results with the dowel bar installations regardless of patching materials. The sections with split pipe, figure eight, and vee devices failed in bond during the first winter cycle. The results with the double vee sections indicate the importance of the patching material to the success or failure of the load transfer system: some sections are performing well and other sections are performing poorly with double vee devices. Horizontal joint movement measurements indicate that neither the dowel bars nor the double vee devices are restricting joint movement

    Stoves

    Get PDF
    PDF pages: 1

    Bit-level pipelined digit-serial array processors

    Get PDF
    A new architecture for high performance digit-serial vector inner product (VIP) which can be pipelined to the bit-level is introduced. The design of the digit-serial vector inner product is based on a new systematic design methodology using radix-2n arithmetic. The proposed architecture allows a high level of bit-level pipelining to increase the throughput rate with minimum initial delay and minimum area. This will give designers greater flexibility in finding the best tradeoff between hardware cost and throughput rate. It is shown that sub-digit pipelined digit-serial structure can achieve a higher throughput rate with much less area consumption than an equivalent bit-parallel structure. A twin-pipe architecture to double the throughput rate of digit-serial multipliers and consequently that of the digit-serial vector inner product is also presented. The effect of the number of pipelining levels and the twin-pipe architecture on the throughput rate and hardware cost are discussed. A two's complement digit-serial architecture which can operate on both negative and positive numbers is also presented
    corecore