1,744 research outputs found

    Doppler Effect Assisted Wireless Communication for Interference Mitigation

    Get PDF
    Doppler effect is a fundamental phenomenon that appears in wave propagation, where a moving observer experiences dilation or contraction of wavelength of a wave. It also appears in radio frequency (RF) wireless communication when there exists a relative movement between the transmitter and the receiver, and is widely considered as a major impairment for reliable wireless communication. The current paper proposes Doppler Assisted Wireless Communication that exploits Doppler effect for co-channel interference mitigation. The proposed system also exploits the propagation environment and the network topology, and consists of an access point with a rotating thin drum antenna. The rotating drum receive antenna is designed in such a way that it shifts the interference signals away from the desired signal band. This paper includes a detailed system model, and the results show that under favourable fading conditions, co-channel interference can be significantly reduced. Therefore, it is anticipated that more sophisticated wireless systems and networks can be designed by extending the basic system proposed herein.Comment: 10 pages, 13 figure

    Imperfect Digital Fibre Optic Link Based Cooperative Distributed Antennas with Fractional Frequency Reuse in Multicell Multiuser Networks

    No full text
    The achievable throughput of the entire cellular area is investigated, when employing fractional frequency reuse techniques in conjunction with realistically modelled imperfect optical fibre aided distributed antenna systems (DAS) operating in a multicell multiuser scenario. Given a fixed total transmit power, a substantial improvement of the cell-edge area's throughput can be achieved without reducing the cell-centre's throughput. The cell-edge's throughput supported in the worst-case direction is significantly enhanced by the cooperative linear transmit processing technique advocated. Explicitly, a cell-edge throughput of η=5\eta=5 bits/s/Hz may be maintained for an imperfect optical fibre model, regardless of the specific geographic distribution of the users

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN

    Optimal overhead selection for interference alignment in time-varying two-user MIMO X channel

    Get PDF
    Channel state information (CSI) at the transmitter and receiver is an essential requirement for interference alignment (IA) schemes. For moving users the channel coefficients vary with time and, therefore, it is required to update CSI both at the transmitter and receiver at regular intervals. Meanwhile it is important to note that frequent updates of CSI will reduce data rate and delayed updates will cause a large variation in CSI. In this context we explore the error performance of IA in two-user multiple-input multiple-output (MIMO) X channel where the channel suffers continuous time-varying fading. The bit error rate (BER) performance of MIMO two-user X channel is evaluated for different Doppler frequencies. We also propose a method for calculating optimal pilot overhead for time-varying channels by setting an upper bound on BER
    corecore