13,667 research outputs found

    Maker-Breaker total domination game

    Full text link
    Maker-Breaker total domination game in graphs is introduced as a natural counterpart to the Maker-Breaker domination game recently studied by Duch\^ene, Gledel, Parreau, and Renault. Both games are instances of the combinatorial Maker-Breaker games. The Maker-Breaker total domination game is played on a graph GG by two players who alternately take turns choosing vertices of GG. The first player, Dominator, selects a vertex in order to totally dominate GG while the other player, Staller, forbids a vertex to Dominator in order to prevent him to reach his goal. It is shown that there are infinitely many connected cubic graphs in which Staller wins and that no minimum degree condition is sufficient to guarantee that Dominator wins when Staller starts the game. An amalgamation lemma is established and used to determine the outcome of the game played on grids. Cacti are also classified with respect to the outcome of the game. A connection between the game and hypergraphs is established. It is proved that the game is PSPACE-complete on split and bipartite graphs. Several problems and questions are also posed.Comment: 21 pages, 5 figure

    Edge Roman domination on graphs

    Full text link
    An edge Roman dominating function of a graph GG is a function f ⁣:E(G){0,1,2}f\colon E(G) \rightarrow \{0,1,2\} satisfying the condition that every edge ee with f(e)=0f(e)=0 is adjacent to some edge ee' with f(e)=2f(e')=2. The edge Roman domination number of GG, denoted by γR(G)\gamma'_R(G), is the minimum weight w(f)=eE(G)f(e)w(f) = \sum_{e\in E(G)} f(e) of an edge Roman dominating function ff of GG. This paper disproves a conjecture of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad stating that if GG is a graph of maximum degree Δ\Delta on nn vertices, then γR(G)ΔΔ+1n\gamma_R'(G) \le \lceil \frac{\Delta}{\Delta+1} n \rceil. While the counterexamples having the edge Roman domination numbers 2Δ22Δ1n\frac{2\Delta-2}{2\Delta-1} n, we prove that 2Δ22Δ1n+22Δ1\frac{2\Delta-2}{2\Delta-1} n + \frac{2}{2\Delta-1} is an upper bound for connected graphs. Furthermore, we provide an upper bound for the edge Roman domination number of kk-degenerate graphs, which generalizes results of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad. We also prove a sharp upper bound for subcubic graphs. In addition, we prove that the edge Roman domination numbers of planar graphs on nn vertices is at most 67n\frac{6}{7}n, which confirms a conjecture of Akbari and Qajar. We also show an upper bound for graphs of girth at least five that is 2-cell embeddable in surfaces of small genus. Finally, we prove an upper bound for graphs that do not contain K2,3K_{2,3} as a subdivision, which generalizes a result of Akbari and Qajar on outerplanar graphs

    On global location-domination in graphs

    Full text link
    A dominating set SS of a graph GG is called locating-dominating, LD-set for short, if every vertex vv not in SS is uniquely determined by the set of neighbors of vv belonging to SS. Locating-dominating sets of minimum cardinality are called LDLD-codes and the cardinality of an LD-code is the location-domination number λ(G)\lambda(G). An LD-set SS of a graph GG is global if it is an LD-set of both GG and its complement G\overline{G}. The global location-domination number λg(G)\lambda_g(G) is the minimum cardinality of a global LD-set of GG. In this work, we give some relations between locating-dominating sets and the location-domination number in a graph and its complement.Comment: 15 pages: 2 tables; 8 figures; 20 reference
    corecore