467 research outputs found

    Dominating sequences in grid-like and toroidal graphs

    Get PDF
    A longest sequence SS of distinct vertices of a graph GG such that each vertex of SS dominates some vertex that is not dominated by its preceding vertices, is called a Grundy dominating sequence; the length of SS is the Grundy domination number of GG. In this paper we study the Grundy domination number in the four standard graph products: the Cartesian, the lexicographic, the direct, and the strong product. For each of the products we present a lower bound for the Grundy domination number which turns out to be exact for the lexicographic product and is conjectured to be exact for the strong product. In most of the cases exact Grundy domination numbers are determined for products of paths and/or cycles.Comment: 17 pages 3 figure

    Perfect domination in regular grid graphs

    Full text link
    We show there is an uncountable number of parallel total perfect codes in the integer lattice graph Λ{\Lambda} of R2\R^2. In contrast, there is just one 1-perfect code in Λ{\Lambda} and one total perfect code in Λ{\Lambda} restricting to total perfect codes of rectangular grid graphs (yielding an asymmetric, Penrose, tiling of the plane). We characterize all cycle products Cm×CnC_m\times C_n with parallel total perfect codes, and the dd-perfect and total perfect code partitions of Λ{\Lambda} and Cm×CnC_m\times C_n, the former having as quotient graph the undirected Cayley graphs of Z2d2+2d+1\Z_{2d^2+2d+1} with generator set {1,2d2}\{1,2d^2\}. For r>1r>1, generalization for 1-perfect codes is provided in the integer lattice of Rr\R^r and in the products of rr cycles, with partition quotient graph K2r+1K_{2r+1} taken as the undirected Cayley graph of Z2r+1\Z_{2r+1} with generator set {1,...,r}\{1,...,r\}.Comment: 16 pages; 11 figures; accepted for publication in Austral. J. Combi

    Half domination arrangements in regular and semi-regular tessellation type graphs

    Full text link
    We study the problem of half-domination sets of vertices in vertex transitive infinite graphs generated by regular or semi-regular tessellations of the plane. In some cases, the results obtained are sharp and in the rest, we show upper bounds for the average densities of vertices in half-domination sets.Comment: 14 pages, 12 figure

    Quasiperfect domination in triangular lattices

    Full text link
    A vertex subset SS of a graph GG is a perfect (resp. quasiperfect) dominating set in GG if each vertex vv of G∖SG\setminus S is adjacent to only one vertex (dv∈{1,2}d_v\in\{1,2\} vertices) of SS. Perfect and quasiperfect dominating sets in the regular tessellation graph of Schl\"afli symbol {3,6}\{3,6\} and in its toroidal quotients are investigated, yielding the classification of their perfect dominating sets and most of their quasiperfect dominating sets SS with induced components of the form KνK_{\nu}, where ν∈{1,2,3}\nu\in\{1,2,3\} depends only on SS.Comment: 20 pages, 9 figures, 5 array

    Grundy dominating sequences and zero forcing sets

    Get PDF
    In a graph GG a sequence v1,v2,…,vmv_1,v_2,\dots,v_m of vertices is Grundy dominating if for all 2≤i≤m2\le i \le m we have N[vi]⊈∪j=1i−1N[vj]N[v_i]\not\subseteq \cup_{j=1}^{i-1}N[v_j] and is Grundy total dominating if for all 2≤i≤m2\le i \le m we have N(vi)⊈∪j=1i−1N(vj)N(v_i)\not\subseteq \cup_{j=1}^{i-1}N(v_j). The length of the longest Grundy (total) dominating sequence has been studied by several authors. In this paper we introduce two similar concepts when the requirement on the neighborhoods is changed to N(vi)⊈∪j=1i−1N[vj]N(v_i)\not\subseteq \cup_{j=1}^{i-1}N[v_j] or N[vi]⊈∪j=1i−1N(vj)N[v_i]\not\subseteq \cup_{j=1}^{i-1}N(v_j). In the former case we establish a strong connection to the zero forcing number of a graph, while we determine the complexity of the decision problem in the latter case. We also study the relationships among the four concepts, and discuss their computational complexities
    • …
    corecore