11,382 research outputs found

    Boosted Top Quark Signals for Heavy Vector Boson Excitations in a Universal Extra Dimension Model

    Full text link
    In view of the fact that the n=1n = 1 Kaluza-Klein (KK) modes in a model with a Universal Extra Dimension (UED), could mimic supersymmetry signatures at the LHC, it is necessary to look for the n=2n = 2 KK modes, which have no analogues in supersymmetry. We discuss the possibility of searching for heavy n=2n = 2 vector boson resonances -- especially the g2g_2 -- through their decays to a highly-boosted top quark-antiquark pair using recently-developed top-jet tagging techniques in the hadronic channel. It is shown that ttˉt\bar{t} signals from the n=2n = 2 gluon resonance are as efficient a discovery mode at the LHC as dilepton channels from the γ2\gamma_2 and Z2Z_2 resonances.Comment: 22 pages, 8 embedded figure

    The Use of Loglinear Models for Assessing Differential Item Functioning Across Manifest and Latent Examinee Groups

    Get PDF
    Loglinear latent class models are used to detect differential item functioning (DIF). These models are formulated in such a manner that the attribute to be assessed may be continuous, as in a Rasch model, or categorical, as in Latent Class Mastery models. Further, an item may exhibit DIF with respect to a manifest grouping variable, a latent grouping variable, or both. Likelihood-ratio tests for assessing the presence of various types of DIF are described, and these methods are illustrated through the analysis of a "real world" data set

    Comparing compact binary parameter distributions I: Methods

    Full text link
    Being able to measure each merger's sky location, distance, component masses, and conceivably spins, ground-based gravitational-wave detectors will provide a extensive and detailed sample of coalescing compact binaries (CCBs) in the local and, with third-generation detectors, distant universe. These measurements will distinguish between competing progenitor formation models. In this paper we develop practical tools to characterize the amount of experimentally accessible information available, to distinguish between two a priori progenitor models. Using a simple time-independent model, we demonstrate the information content scales strongly with the number of observations. The exact scaling depends on how significantly mass distributions change between similar models. We develop phenomenological diagnostics to estimate how many models can be distinguished, using first-generation and future instruments. Finally, we emphasize that multi-observable distributions can be fully exploited only with very precisely calibrated detectors, search pipelines, parameter estimation, and Bayesian model inference

    The DEEP2 Galaxy Redshift Survey: Redshift Identification of Single-Line Emission Galaxies

    Get PDF
    We present two methods for determining spectroscopic redshifts of galaxies in the DEEP2 survey which display only one identifiable feature, an emission line, in the observed spectrum ("single-line galaxies"). First, we assume each single line is one of the four brightest lines accessible to DEEP2: Halpha, [OIII] 5007, Hbeta, or [OII] 3727. Then, we supplement spectral information with BRI photometry. The first method, parameter space proximity (PSP), calculates the distance of a single-line galaxy to galaxies of known redshift in (B-R), (R-I), R, observed wavelength parameter space. The second method is an artificial neural network (ANN). Prior information, such as allowable line widths and ratios, rules out one or more of the four lines for some galaxies in both methods. Based on analyses of evaluation sets, both methods are nearly perfect at identifying blended [OII] doublets. Of the lines identified as Halpha in the PSP and ANN methods, 91.4% and 94.2% respectively are accurate. Although the methods are not this accurate at discriminating between [OIII] and Hbeta, they can identify a single line as one of the two, and the ANN method in particular unambiguously identifies many [OIII] lines. From a sample of 640 single-line spectra, the methods determine the identities of 401 (62.7%) and 472 (73.8%) single lines, respectively, at accuracies similar to those found in the evaluation sets.Comment: 11 pages, 6 figures, accepted to Ap

    What can systems and control theory do for agricultural science?

    Get PDF
    Abstract: While many professionals with a background in agricultural and bio-resource sciences work with models, only few have been exposed to systems and control theory. The purpose of this paper is to elucidate a selection of methods from systems theory that can be beneficial to quantitative agricultural science. The state space representation of a dynamical system is the corner stone in the mainstream of systems theory. It is not well known in agro-modelling that linearization followed by evaluation of eigenvalues and eigenvectors of the system matrix is useful to obtain dominant time constants and dominant directions in state space, and offers opportunities for science-based model reduction. The continuous state space description is also useful in deriving truly equivalent discrete time models, and clearly shows that parameters obtained with discrete models must be interpreted with care when transferred to another model code environment. Sensitivity analysis of dynamic models reveals that sensitivity is time and input dependent. Identifiability and sensitivity are essential notions in the design of informative experiments, and the idea of persistent excitation, leading to dynamic experiments rather than the usual static experiments can be very beneficial. A special branch of systems theory is control theory. Obviously, control plays an important part in agricultural and bio-systems engineering, but it is argued that also agronomists can profit from notions from the world of control, even if practical control options are restricted to alleviating growth limiting conditions, rather than true crop control. The most important is the idea of reducing uncertainty via feed-back. On the other hand, the systems and control community is challenged to do more to address the problems of real life, such as spatial variability, measurement delays, lacking data, environmental stochasticity, parameter variability, unavoidable model uncertainty, discrete phenomena, variable system structures, the interaction of technical ad living systems, and, indeed, the study of the functioning of life itself

    Inferring Core-Collapse Supernova Physics with Gravitational Waves

    Get PDF
    Stellar collapse and the subsequent development of a core-collapse supernova explosion emit bursts of gravitational waves (GWs) that might be detected by the advanced generation of laser interferometer gravitational-wave observatories such as Advanced LIGO, Advanced Virgo, and LCGT. GW bursts from core-collapse supernovae encode information on the intricate multi-dimensional dynamics at work at the core of a dying massive star and may provide direct evidence for the yet uncertain mechanism driving supernovae in massive stars. Recent multi-dimensional simulations of core-collapse supernovae exploding via the neutrino, magnetorotational, and acoustic explosion mechanisms have predicted GW signals which have distinct structure in both the time and frequency domains. Motivated by this, we describe a promising method for determining the most likely explosion mechanism underlying a hypothetical GW signal, based on Principal Component Analysis and Bayesian model selection. Using simulated Advanced LIGO noise and assuming a single detector and linear waveform polarization for simplicity, we demonstrate that our method can distinguish magnetorotational explosions throughout the Milky Way (D <~ 10kpc) and explosions driven by the neutrino and acoustic mechanisms to D <~ 2kpc. Furthermore, we show that we can differentiate between models for rotating accretion-induced collapse of massive white dwarfs and models of rotating iron core collapse with high reliability out to several kpc.Comment: 22 pages, 9 figure

    Ethnicity, Communication and Growth

    Get PDF
    In this paper we consider the link often alleged between ethnic diversity and the growth rate of GDP per capita. We first assume that it is ethnic polarization rather than ethnic fragmentation that is harmful for growth so that the relationship may be non-linear. Second, we hypothesize that the impact of ethnic diversity on growth may depend on communication costs. This leads us to estimate a traditional growth rate equation on cross sectional data in a switching regression framework. In "low communication costs countries", the relationship between growth and ethnic diversity is U-shaped. On the other hand, in "high communication costs countries", growth is a decreasing function of ethnic diversity and the severity of the latter's deleterious impact is an increasing function of communication costs, proxied here by the illiteracy rate. The regime that a country belongs to is a function of two proxies for communication costs: the illiteracy rate and population density. The impact of ethnic diversity on growth seems not to operate through macroeconomic policy choices. Rather it is a direct transmission mechanism, in which ethnic diversity affects private and public ressource allocation, that appears to dominate.

    Optical Morphologies of Millijansky Radio Galaxies Observed by HST and in the VLA FIRST Survey

    Full text link
    We report on a statistical study of the 51 radio galaxies at the millijansky flux level from the Faint Images of the Radio Sky at Twenty centimeters, including their optical morphologies and structure obtained with the Hubble Space Telescope. Our optical imaging is significantly deeper (~2 mag) than previous studies with the superior angular resolution of space-based imaging. We that find 8/51 (16%) of the radio sources have no optically identifiable counterpart to AB~24 mag. For the remaining 43 sources, only 25 are sufficiently resolved in the HST images to reliably assign a visual classification: 15 (60%) are elliptical galaxies, 2 (8%) are late-type spiral galaxies, 1 (4%) is an S0, 3 (12%) are point-like objects (quasars), and 4 (16%) are merger systems. We find a similar distribution of optical types with measurements of the Sersic index. The optical magnitude distribution of these galaxies peaks at I~20.7+-0.5 AB mag, which is ~3 mag brighter than the depth of our typical HST field and is thus not due to the WFPC2 detection limit. This supports the luminosity-dependent density evolutionary model, where the majority of faint radio galaxies typically have L*-optical luminosities and a median redshift of z~0.8 with a relatively abrupt redshift cut-off at z>~2. We discuss our results in the context of the evolution of elliptical galaxies and active galactic nuclei.Comment: 20 pages, 8 figures, 51 galaxy images, and 5 tables. Uses emulateapj.cls and natbib.sty. Accepted to ApJS. High resolution images are available upon reques
    • …
    corecore