406 research outputs found

    Introduction to Memristive HTM Circuits

    Get PDF
    Hierarchical temporal memory (HTM) is a cognitive learning algorithm intended to mimic the working principles of neocortex, part of the human brain said to be responsible for data classification, learning, and making predictions. Based on the combination of various concepts of neuroscience, it has already been shown that the software realization of HTM is effective on different recognition, detection, and prediction making tasks. However, its distinctive features, expressed in terms of hierarchy, modularity, and sparsity, suggest that hardware realization of HTM can be attractive in terms of providing faster processing speed as well as small memory requirements, on-chip area, and total power consumption. Despite there are few works done on hardware realization for HTM, there are promising results which illustrate effectiveness of incorporating an emerging memristor device technology to solve this open-research problem. Hence, this chapter reviews hardware designs for HTM with specific focus on memristive HTM circuits

    Stochastic-Based Computing with Emerging Spin-Based Device Technologies

    Get PDF
    In this dissertation, analog and emerging device physics is explored to provide a technology platform to design new bio-inspired system and novel architecture. With CMOS approaching the nano-scaling, their physics limits in feature size. Therefore, their physical device characteristics will pose severe challenges to constructing robust digital circuitry. Unlike transistor defects due to fabrication imperfection, quantum-related switching uncertainties will seriously increase their susceptibility to noise, thus rendering the traditional thinking and logic design techniques inadequate. Therefore, the trend of current research objectives is to create a non-Boolean high-level computational model and map it directly to the unique operational properties of new, power efficient, nanoscale devices. The focus of this research is based on two-fold: 1) Investigation of the physical hysteresis switching behaviors of domain wall device. We analyze phenomenon of domain wall device and identify hysteresis behavior with current range. We proposed the Domain-Wall-Motion-based (DWM) NCL circuit that achieves approximately 30x and 8x improvements in energy efficiency and chip layout area, respectively, over its equivalent CMOS design, while maintaining similar delay performance for a one bit full adder. 2) Investigation of the physical stochastic switching behaviors of Mag- netic Tunnel Junction (MTJ) device. With analyzing of stochastic switching behaviors of MTJ, we proposed an innovative stochastic-based architecture for implementing artificial neural network (S-ANN) with both magnetic tunneling junction (MTJ) and domain wall motion (DWM) devices, which enables efficient computing at an ultra-low voltage. For a well-known pattern recognition task, our mixed-model HSPICE simulation results have shown that a 34-neuron S-ANN implementation, when compared with its deterministic-based ANN counterparts implemented with digital and analog CMOS circuits, achieves more than 1.5 ~ 2 orders of magnitude lower energy consumption and 2 ~ 2.5 orders of magnitude less hidden layer chip area

    In-memory computing with emerging memory devices: Status and outlook

    Get PDF
    Supporting data for "In-memory computing with emerging memory devices: status and outlook", submitted to APL Machine Learning

    A Phase Change Memory and DRAM Based Framework For Energy-Efficient and High-Speed In-Memory Stochastic Computing

    Get PDF
    Convolutional Neural Networks (CNNs) have proven to be highly effective in various fields related to Artificial Intelligence (AI) and Machine Learning (ML). However, the significant computational and memory requirements of CNNs make their processing highly compute and memory-intensive. In particular, the multiply-accumulate (MAC) operation, which is a fundamental building block of CNNs, requires enormous arithmetic operations. As the input dataset size increases, the traditional processor-centric von-Neumann computing architecture becomes ill-suited for CNN-based applications. This results in exponentially higher latency and energy costs, making the processing of CNNs highly challenging. To overcome these challenges, researchers have explored the Processing-In Memory (PIM) technique, which involves placing the processing unit inside or near the memory unit. This approach reduces data migration length and utilizes the internal memory bandwidth at the memory chip level. However, developing a reliable PIM-based system with minimal hardware modifications and design complexity remains a significant challenge. The proposed solution in the report suggests utilizing different memory technologies, such as Dynamic RAM (DRAM) and phase change memory (PCM), with Stochastic arithmetic and minimal add-on logic. Stochastic computing is a technique that uses random numbers to perform arithmetic operations instead of traditional binary representation. This technique reduces hardware requirements for CNN\u27s arithmetic operations, making it possible to implement them with minimal add-on logic. The report details the workflow for performing arithmetical operations used by CNNs, including MAC, activation, and floating-point functions. The proposed solution includes designs for scalable Stochastic Number Generator (SNG), DRAM CNN accelerator, non-volatile memory (NVM) class PCRAM-based CNN accelerator, and DRAM-based stochastic to binary conversion (StoB) for in-situ deep learning. These designs utilize stochastic computing to reduce the hardware requirements for CNN\u27s arithmetic operations and enable energy and time-efficient processing of CNNs. The report also identifies future research directions for the proposed designs, including in-situ PCRAM-based SNG, ODIN (A Bit-Parallel Stochastic Arithmetic Based Accelerator for In-Situ Neural Network Processing in Phase Change RAM), ATRIA (Bit-Parallel Stochastic Arithmetic Based Accelerator for In-DRAM CNN Processing), and AGNI (In-Situ, Iso-Latency Stochastic-to-Binary Number Conversion for In-DRAM Deep Learning), and presents initial findings for these ideas. In summary, the proposed solution in the report offers a comprehensive approach to address the challenges of processing CNNs, and the proposed designs have the potential to improve the energy and time efficiency of CNNs significantly. Using Stochastic Computing and different memory technologies enables the development of reliable PIM-based systems with minimal hardware modifications and design complexity, providing a promising path for the future of CNN-based applications

    Thermal profiling in CMOS/memristor hybrid architectures

    Get PDF
    CMOS/memristor hybrid architectures combine conventional CMOS processing elements with thin-film memristor-based crossbar circuits for high-density reconfigurable systems. These architectures have received an explosive growth in research over the past few years due to the first practical demonstration of a thin-film memristor in 2008. The reliability and lifetimes of both the CMOS and memristor partitions of these architectures are severely affected by temperature variations across the chip. Therefore, it is expected that dynamic thermal management (DTM) mechanisms will be needed to improve their reliability and lifetime. This thesis explores one aspect of DTM--thermal profiling--in a CMOS/memristor memory architecture. A temperature sensing resistive random access memory (TSRRAM) was designed. Temperature information is extracted from the TSRRAM by measuring the write time of thin-film memristors. Active and passive sensing mechanisms are also introduced as means for DTM algorithms to determine the thermal profile of the chip. Crosstherm, a simulation framework, was developed to analyze the effects of temperature variations in CMOS/memristor architectures. The TSRRAM design was simulated using the Crosstherm framework for four CMOS processor benchmarks. Passive sensing produced a mean absolute sensor error across all benchmarks of 2.14 K. The size of the DTM unit\u27s memory was also shown to have a significant impact on the accuracy of extracted thermal data during passive sensing. Active sensing was also demonstrated to show the effect of dynamic adjustment of sensor resolution on the accuracy of hotspot temperature estimations

    Non-Volatile Memory Array Based Quantization- and Noise-Resilient LSTM Neural Networks

    Full text link
    In cloud and edge computing models, it is important that compute devices at the edge be as power efficient as possible. Long short-term memory (LSTM) neural networks have been widely used for natural language processing, time series prediction and many other sequential data tasks. Thus, for these applications there is increasing need for low-power accelerators for LSTM model inference at the edge. In order to reduce power dissipation due to data transfers within inference devices, there has been significant interest in accelerating vector-matrix multiplication (VMM) operations using non-volatile memory (NVM) weight arrays. In NVM array-based hardware, reduced bit-widths also significantly increases the power efficiency. In this paper, we focus on the application of quantization-aware training algorithm to LSTM models, and the benefits these models bring in terms of resilience against both quantization error and analog device noise. We have shown that only 4-bit NVM weights and 4-bit ADC/DACs are needed to produce equivalent LSTM network performance as floating-point baseline. Reasonable levels of ADC quantization noise and weight noise can be naturally tolerated within our NVMbased quantized LSTM network. Benchmark analysis of our proposed LSTM accelerator for inference has shown at least 2.4x better computing efficiency and 40x higher area efficiency than traditional digital approaches (GPU, FPGA, and ASIC). Some other novel approaches based on NVM promise to deliver higher computing efficiency (up to 4.7x) but require larger arrays with potential higher error rates.Comment: Published in: 2019 IEEE International Conference on Rebooting Computing (ICRC
    • …
    corecore