36,832 research outputs found

    MaTrEx: the DCU machine translation system for IWSLT 2007

    Get PDF
    In this paper, we give a description of the machine translation system developed at DCU that was used for our second participation in the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT 2007). In this participation, we focus on some new methods to improve system quality. Specifically, we try our word packing technique for different language pairs, we smooth our translation tables with out-of-domain word translations for the Arabic–English and Chinese–English tasks in order to solve the high number of out of vocabulary items, and finally we deploy a translation-based model for case and punctuation restoration

    Exploiting alignment techniques in MATREX: the DCU machine translation system for IWSLT 2008

    Get PDF
    In this paper, we give a description of the machine translation (MT) system developed at DCU that was used for our third participation in the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT 2008). In this participation, we focus on various techniques for word and phrase alignment to improve system quality. Specifically, we try out our word packing and syntax-enhanced word alignment techniques for the Chinese–English task and for the English–Chinese task for the first time. For all translation tasks except Arabic–English, we exploit linguistically motivated bilingual phrase pairs extracted from parallel treebanks. We smooth our translation tables with out-of-domain word translations for the Arabic–English and Chinese–English tasks in order to solve the problem of the high number of out of vocabulary items. We also carried out experiments combining both in-domain and out-of-domain data to improve system performance and, finally, we deploy a majority voting procedure combining a language model based method and a translation-based method for case and punctuation restoration. We participated in all the translation tasks and translated both the single-best ASR hypotheses and the correct recognition results. The translation results confirm that our new word and phrase alignment techniques are often helpful in improving translation quality, and the data combination method we proposed can significantly improve system performance

    Bilingually motivated domain-adapted word segmentation for statistical machine translation

    Get PDF
    We introduce a word segmentation approach to languages where word boundaries are not orthographically marked, with application to Phrase-Based Statistical Machine Translation (PB-SMT). Instead of using manually segmented monolingual domain-specific corpora to train segmenters, we make use of bilingual corpora and statistical word alignment techniques. First of all, our approach is adapted for the specific translation task at hand by taking the corresponding source (target) language into account. Secondly, this approach does not rely on manually segmented training data so that it can be automatically adapted for different domains. We evaluate the performance of our segmentation approach on PB-SMT tasks from two domains and demonstrate that our approach scores consistently among the best results across different data conditions

    Joint Training for Neural Machine Translation Models with Monolingual Data

    Full text link
    Monolingual data have been demonstrated to be helpful in improving translation quality of both statistical machine translation (SMT) systems and neural machine translation (NMT) systems, especially in resource-poor or domain adaptation tasks where parallel data are not rich enough. In this paper, we propose a novel approach to better leveraging monolingual data for neural machine translation by jointly learning source-to-target and target-to-source NMT models for a language pair with a joint EM optimization method. The training process starts with two initial NMT models pre-trained on parallel data for each direction, and these two models are iteratively updated by incrementally decreasing translation losses on training data. In each iteration step, both NMT models are first used to translate monolingual data from one language to the other, forming pseudo-training data of the other NMT model. Then two new NMT models are learnt from parallel data together with the pseudo training data. Both NMT models are expected to be improved and better pseudo-training data can be generated in next step. Experiment results on Chinese-English and English-German translation tasks show that our approach can simultaneously improve translation quality of source-to-target and target-to-source models, significantly outperforming strong baseline systems which are enhanced with monolingual data for model training including back-translation.Comment: Accepted by AAAI 201

    Semi-Supervised Learning for Neural Machine Translation

    Full text link
    While end-to-end neural machine translation (NMT) has made remarkable progress recently, NMT systems only rely on parallel corpora for parameter estimation. Since parallel corpora are usually limited in quantity, quality, and coverage, especially for low-resource languages, it is appealing to exploit monolingual corpora to improve NMT. We propose a semi-supervised approach for training NMT models on the concatenation of labeled (parallel corpora) and unlabeled (monolingual corpora) data. The central idea is to reconstruct the monolingual corpora using an autoencoder, in which the source-to-target and target-to-source translation models serve as the encoder and decoder, respectively. Our approach can not only exploit the monolingual corpora of the target language, but also of the source language. Experiments on the Chinese-English dataset show that our approach achieves significant improvements over state-of-the-art SMT and NMT systems.Comment: Corrected a typ

    Cross-lingual Distillation for Text Classification

    Full text link
    Cross-lingual text classification(CLTC) is the task of classifying documents written in different languages into the same taxonomy of categories. This paper presents a novel approach to CLTC that builds on model distillation, which adapts and extends a framework originally proposed for model compression. Using soft probabilistic predictions for the documents in a label-rich language as the (induced) supervisory labels in a parallel corpus of documents, we train classifiers successfully for new languages in which labeled training data are not available. An adversarial feature adaptation technique is also applied during the model training to reduce distribution mismatch. We conducted experiments on two benchmark CLTC datasets, treating English as the source language and German, French, Japan and Chinese as the unlabeled target languages. The proposed approach had the advantageous or comparable performance of the other state-of-art methods.Comment: Accepted at ACL 2017; Code available at https://github.com/xrc10/cross-distil
    corecore