22,434 research outputs found

    Pattern Formation of Ion Channels with State Dependent Electrophoretic Charges and Diffusion Constants in Fluid Membranes

    Full text link
    A model of mobile, charged ion channels in a fluid membrane is studied. The channels may switch between an open and a closed state according to a simple two-state kinetics with constant rates. The effective electrophoretic charge and the diffusion constant of the channels may be different in the closed and in the open state. The system is modeled by densities of channel species, obeying simple equations of electro-diffusion. The lateral transmembrane voltage profile is determined from a cable-type equation. Bifurcations from the homogeneous, stationary state appear as hard-mode, soft-mode or hard-mode oscillatory transitions within physiologically reasonable ranges of model parameters. We study the dynamics beyond linear stability analysis and derive non-linear evolution equations near the transitions to stationary patterns.Comment: 10 pages, 7 figures, will be submitted to Phys. Rev.

    Coexistence of wrinkles and blisters in supported graphene

    Get PDF
    Blisters induced by gas trapped in the interstitial space between supported graphene and the substrate are commonly observed. These blisters are often quasi-spherical with a circular rim, but polygonal blisters are also common and coexist with wrinkles emanating from their vertices. Here, we show that these different blister morphologies can be understood mechanically in terms of free energy minimization of the supported graphene sheet for a given mass of trapped gas and for a given lateral strain. Using a nonlinear continuum model for supported graphene closely reproducing experimental images of blisters, we build a morphological diagram as a function of strain and trapped mass. We show that the transition from quasi-spherical to polygonal of blisters as compressive strain is increased is a process of stretching energy relaxation and focusing, as many other crumpling events in thin sheets. Furthermore, to characterize this transition, we theoretically examine the onset of nucleation of short wrinkles in the periphery of a quasi-spherical blister. Our results are experimentally testable and provide a framework to control complex out-of-plane motifs in supported graphene combining blisters and wrinkles for strain engineering of graphene.Peer ReviewedPostprint (published version

    Topography and instability of monolayers near domain boundaries

    Full text link
    We theoretically study the topography of a biphasic surfactant monolayer in the vicinity of domain boundaries. The differing elastic properties of the two phases generally lead to a nonflat topography of ``mesas'', where domains of one phase are elevated with respect to the other phase. The mesas are steep but low, having heights of up to 10 nm. As the monolayer is laterally compressed, the mesas develop overhangs and eventually become unstable at a surface tension of about K(dc)^2 (dc being the difference in spontaneous curvature and K a bending modulus). In addition, the boundary is found to undergo a topography-induced rippling instability upon compression, if its line tension is smaller than about K(dc). The effect of diffuse boundaries on these features and the topographic behavior near a critical point are also examined. We discuss the relevance of our findings to several experimental observations related to surfactant monolayers: (i) small topographic features recently found near domain boundaries; (ii) folding behavior observed in mixed phospholipid monolayers and model lung surfactants; (iii) roughening of domain boundaries seen under lateral compression; (iv) the absence of biphasic structures in tensionless surfactant films.Comment: 17 pages, 9 figures, using RevTeX and epsf, submitted to Phys Rev

    Near-critical fluctuations and cytoskeleton-assisted phase separation lead to subdiffusion in cell membranes

    Get PDF
    We address the relationship between membrane microheterogeneity and anomalous subdiffusion in cell membranes by carrying out Monte Carlo simulations of two-component lipid membranes. We find that near-critical fluctuations in the membrane lead to transient subdiffusion, while membrane-cytoskeleton interaction strongly affects phase separation, enhances subdiffusion, and eventually leads to hop diffusion of lipids. Thus, we present a minimum realistic model for membrane rafts showing the features of both microscopic phase separation and subdiffusion.Comment: 21 pages, 5 figures; Supporting Material 5 pages, 1 figure, 1 tabl

    Turing pattern formation in the Brusselator system with nonlinear diffusion

    Full text link
    In this work we investigate the effect of density dependent nonlinear diffusion on pattern formation in the Brusselator system. Through linear stability analysis of the basic solution we determine the Turing and the oscillatory instability boundaries. A comparison with the classical linear diffusion shows how nonlinear diffusion favors the occurrence of Turing pattern formation. We study the process of pattern formation both in 1D and 2D spatial domains. Through a weakly nonlinear multiple scales analysis we derive the equations for the amplitude of the stationary patterns. The analysis of the amplitude equations shows the occurrence of a number of different phenomena, including stable supercritical and subcritical Turing patterns with multiple branches of stable solutions leading to hysteresis. Moreover we consider traveling patterning waves: when the domain size is large, the pattern forms sequentially and traveling wavefronts are the precursors to patterning. We derive the Ginzburg-Landau equation and describe the traveling front enveloping a pattern which invades the domain. We show the emergence of radially symmetric target patterns, and through a matching procedure we construct the outer amplitude equation and the inner core solution.Comment: Physical Review E, 201

    Chaos at the border of criticality

    Full text link
    The present paper points out to a novel scenario for formation of chaotic attractors in a class of models of excitable cell membranes near an Andronov-Hopf bifurcation (AHB). The mechanism underlying chaotic dynamics admits a simple and visual description in terms of the families of one-dimensional first-return maps, which are constructed using the combination of asymptotic and numerical techniques. The bifurcation structure of the continuous system (specifically, the proximity to a degenerate AHB) endows the Poincare map with distinct qualitative features such as unimodality and the presence of the boundary layer, where the map is strongly expanding. This structure of the map in turn explains the bifurcation scenarios in the continuous system including chaotic mixed-mode oscillations near the border between the regions of sub- and supercritical AHB. The proposed mechanism yields the statistical properties of the mixed-mode oscillations in this regime. The statistics predicted by the analysis of the Poincare map and those observed in the numerical experiments of the continuous system show a very good agreement.Comment: Chaos: An Interdisciplinary Journal of Nonlinear Science (tentatively, Sept 2008
    corecore