9,051 research outputs found

    SERGAN : speech enhancement using relativistic generative adversarial networks with gradient penalty

    Get PDF
    Popular neural network-based speech enhancement systems operate on the magnitude spectrogram and ignore the phase mismatch between the noisy and clean speech signals. Recently, conditional generative adversarial networks (cGANs) have shown promise in addressing the phase mismatch problem by directly mapping the raw noisy speech waveform to the underlying clean speech signal. However, stabilizing and training cGAN systems is difficult and they still fall short of the performance achieved by spectral enhancement approaches. This paper introduces relativistic GANs with a relativistic cost function at its discriminator and gradient penalty to improve time-domain speech enhancement. Simulation results show that relativistic discriminators provide a more stable training of cGANs and yield a better generator network for improved speech enhancement performance

    SEGAN: Speech Enhancement Generative Adversarial Network

    Full text link
    Current speech enhancement techniques operate on the spectral domain and/or exploit some higher-level feature. The majority of them tackle a limited number of noise conditions and rely on first-order statistics. To circumvent these issues, deep networks are being increasingly used, thanks to their ability to learn complex functions from large example sets. In this work, we propose the use of generative adversarial networks for speech enhancement. In contrast to current techniques, we operate at the waveform level, training the model end-to-end, and incorporate 28 speakers and 40 different noise conditions into the same model, such that model parameters are shared across them. We evaluate the proposed model using an independent, unseen test set with two speakers and 20 alternative noise conditions. The enhanced samples confirm the viability of the proposed model, and both objective and subjective evaluations confirm the effectiveness of it. With that, we open the exploration of generative architectures for speech enhancement, which may progressively incorporate further speech-centric design choices to improve their performance.Comment: 5 pages, 4 figures, accepted in INTERSPEECH 201

    Attentive Adversarial Learning for Domain-Invariant Training

    Full text link
    Adversarial domain-invariant training (ADIT) proves to be effective in suppressing the effects of domain variability in acoustic modeling and has led to improved performance in automatic speech recognition (ASR). In ADIT, an auxiliary domain classifier takes in equally-weighted deep features from a deep neural network (DNN) acoustic model and is trained to improve their domain-invariance by optimizing an adversarial loss function. In this work, we propose an attentive ADIT (AADIT) in which we advance the domain classifier with an attention mechanism to automatically weight the input deep features according to their importance in domain classification. With this attentive re-weighting, AADIT can focus on the domain normalization of phonetic components that are more susceptible to domain variability and generates deep features with improved domain-invariance and senone-discriminativity over ADIT. Most importantly, the attention block serves only as an external component to the DNN acoustic model and is not involved in ASR, so AADIT can be used to improve the acoustic modeling with any DNN architectures. More generally, the same methodology can improve any adversarial learning system with an auxiliary discriminator. Evaluated on CHiME-3 dataset, the AADIT achieves 13.6% and 9.3% relative WER improvements, respectively, over a multi-conditional model and a strong ADIT baseline.Comment: 5 pages, 1 figure, ICASSP 201
    • …
    corecore