124 research outputs found

    Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays.

    Get PDF
    Resistive RAM crossbar arrays offer an attractive solution to minimize off-chip data transfer and parallelize on-chip computations for neural networks. Here, we report a hardware/software co-design approach based on low energy subquantum conductive bridging RAM (CBRAMÂź) devices and a network pruning technique to reduce network level energy consumption. First, we demonstrate low energy subquantum CBRAM devices exhibiting gradual switching characteristics important for implementing weight updates in hardware during unsupervised learning. Then we develop a network pruning algorithm that can be employed during training, different from previous network pruning approaches applied for inference only. Using a 512 kbit subquantum CBRAM array, we experimentally demonstrate high recognition accuracy on the MNIST dataset for digital implementation of unsupervised learning. Our hardware/software co-design approach can pave the way towards resistive memory based neuro-inspired systems that can autonomously learn and process information in power-limited settings

    Statistical physics of neural systems

    Get PDF
    The ability of processing and storing information is considered a characteristic trait of intelligent systems. In biological neural networks, learning is strongly believed to take place at the synaptic level, in terms of modulation of synaptic efficacy. It can be thus interpreted as the expression of a collective phenomena, emerging when neurons connect each other in constituting a complex network of interactions. In this work, we represent learning as an optimization problem, actually implementing a local search, in the synaptic space, of specific configurations, known as solutions and making a neural network able to accomplish a series of different tasks. For instance, we would like the network to adapt the strength of its synaptic connections, in order to be capable of classifying a series of objects, by assigning to each object its corresponding class-label. Supported by a series of experiments, it has been suggested that synapses may exploit a very few number of synaptic states for encoding information. It is known that this feature makes learning in neural networks a challenging task. Extending the large deviation analysis performed in the extreme case of binary synaptic couplings, in this work, we prove the existence of regions of the phase space, where solutions are organized in extremely dense clusters. This picture turns out to be invariant to the tuning of all the parameters of the model. Solutions within the clusters are more robust to noise, thus enhancing the learning performances. This has inspired the design of new learning algorithms, as well as it has clarified the effectiveness of the previously proposed ones. We further provide quantitative evidence that the gain achievable when considering a greater number of available synaptic states for encoding information, is consistent only up to a very few number of bits. This is in line with the above mentioned experimental results. Besides the challenging aspect of low precision synaptic connections, it is also known that the neuronal environment is extremely noisy. Whether stochasticity can enhance or worsen the learning performances is currently matter of debate. In this work, we consider a neural network model where the synaptic connections are random variables, sampled according to a parametrized probability distribution. We prove that, this source of stochasticity naturally drives towards regions of the phase space at high densities of solutions. These regions are directly accessible by means of gradient descent strategies, over the parameters of the synaptic couplings distribution. We further set up a statistical physics analysis, through which we show that solutions in the dense regions are characterized by robustness and good generalization performances. Stochastic neural networks are also capable of building abstract representations of input stimuli and then generating new input samples, according to the inferred statistics of the input signal. In this regard, we propose a new learning rule, called Delayed Correlation Matching (DCM), that relying on the matching between time-delayed activity correlations, makes a neural network able to store patterns of neuronal activity. When considering hidden neuronal states, the DCM learning rule is also able to train Restricted Boltzmann Machines as generative models. In this work, we further require the DCM learning rule to fulfil some biological constraints, such as locality, sparseness of the neural coding and the Dale’s principle. While retaining all these biological requirements, the DCM learning rule has shown to be effective for different network topologies, and in both on-line learning regimes and presence of correlated patterns. We further show that it is also able to prevent the creation of spurious attractor states

    Active Tactile Sensing for Texture Perception in Robotic Systems

    Get PDF
    This thesis presents a comprehensive study of tactile sensing, particularly on the prob- lem of active texture perception. It includes a brief introduction to tactile sensing technology and the neural basis for tactile perception. It follows the literature review of textural percep- tion with tactile sensing. I propose a decoding and perception pipeline to tackle fine-texture classification/identification problems via active touching. Experiments are conducted using a 7DOF robotic arm with a finger-shaped tactile sensor mounted on the end-effector to per- form sliding/rubbing movements on multiple fabrics. Low-dimensional frequency features are extracted from the raw signals to form a perceptive feature space, where tactile signals are mapped and segregated into fabric classes. Fabric classes can be parameterized and sim- plified in the feature space using elliptical equations. Results from experiments of varied control parameters are compared and visualized to show that different exploratory move- ments have an apparent impact on the perceived tactile information. It implies the possibil- ity of optimising the robotic movements to improve the textural classification/identification performance

    Learning to process with spikes and to localise pulses

    Get PDF
    In the last few decades, deep learning with artificial neural networks (ANNs) has emerged as one of the most widely used techniques in tasks such as classification and regression, achieving competitive results and in some cases even surpassing human-level performance. Nonetheless, as ANN architectures are optimised towards empirical results and departed from their biological precursors, how exactly human brains process information using these short electrical pulses called spikes remains a mystery. Hence, in this thesis, we explore the problem of learning to process with spikes and to localise pulses. We first consider spiking neural networks (SNNs), a type of ANN that more closely mimic biological neural networks in that neurons communicate with one another using spikes. This unique architecture allows us to look into the role of heterogeneity in learning. Since it is conjectured that the information is encoded by the timing of spikes, we are particularly interested in the heterogeneity of time constants of neurons. We then trained SNNs for classification tasks on a range of visual and auditory neuromorphic datasets, which contain streams of events (spike times) instead of the conventional frame-based data, and show that the overall performance is improved by allowing the neurons to have different time constants, especially on tasks with richer temporal structure. We also find that the learned time constants are distributed similarly to those experimentally observed in some mammalian cells. Besides, we demonstrate that learning with heterogeneity improves robustness against hyperparameter mistuning. These results suggest that heterogeneity may be more than the byproduct of noisy processes and perhaps serves a key role in learning in changing environments, yet heterogeneity has been overlooked in basic artificial models. While neuromorphic datasets, which are often captured by neuromorphic devices that closely model the corresponding biological systems, have enabled us to explore the more biologically plausible SNNs, there still exists a gap in understanding how spike times encode information in actual biological neural networks like human brains, as such data is difficult to acquire due to the trade-off between the timing precision and the number of cells simultaneously recorded electrically. Instead, what we usually obtain is the low-rate discrete samples of trains of filtered spikes. Hence, in the second part of the thesis, we focus on a different type of problem involving pulses, that is to retrieve the precise pulse locations from these low-rate samples. We make use of the finite rate of innovation (FRI) sampling theory, which states that perfect reconstruction is possible for classes of continuous non-bandlimited signals that have a small number of free parameters. However, existing FRI methods break down under very noisy conditions due to the so-called subspace swap event. Thus, we present two novel model-based learning architectures: Deep Unfolded Projected Wirtinger Gradient Descent (Deep Unfolded PWGD) and FRI Encoder-Decoder Network (FRIED-Net). The former is based on the existing iterative denoising algorithm for subspace-based methods, while the latter models directly the relationship between the samples and the locations of the pulses using an autoencoder-like network. Using a stream of K Diracs as an example, we show that both algorithms are able to overcome the breakdown inherent in the existing subspace-based methods. Moreover, we extend our FRIED-Net framework beyond conventional FRI methods by considering when the shape is unknown. We show that the pulse shape can be learned using backpropagation. This coincides with the application of spike detection from real-world calcium imaging data, where we achieve competitive results. Finally, we explore beyond canonical FRI signals and demonstrate that FRIED-Net is able to reconstruct streams of pulses with different shapes.Open Acces

    A combined experimental and computational approach to investigate emergent network dynamics based on large-scale neuronal recordings

    Get PDF
    Sviluppo di un approccio integrato computazionale-sperimentale per lo studio di reti neuronali mediante registrazioni elettrofisiologich

    Machine Learning-Aided Operations and Communications of Unmanned Aerial Vehicles: A Contemporary Survey

    Full text link
    The ongoing amalgamation of UAV and ML techniques is creating a significant synergy and empowering UAVs with unprecedented intelligence and autonomy. This survey aims to provide a timely and comprehensive overview of ML techniques used in UAV operations and communications and identify the potential growth areas and research gaps. We emphasise the four key components of UAV operations and communications to which ML can significantly contribute, namely, perception and feature extraction, feature interpretation and regeneration, trajectory and mission planning, and aerodynamic control and operation. We classify the latest popular ML tools based on their applications to the four components and conduct gap analyses. This survey also takes a step forward by pointing out significant challenges in the upcoming realm of ML-aided automated UAV operations and communications. It is revealed that different ML techniques dominate the applications to the four key modules of UAV operations and communications. While there is an increasing trend of cross-module designs, little effort has been devoted to an end-to-end ML framework, from perception and feature extraction to aerodynamic control and operation. It is also unveiled that the reliability and trust of ML in UAV operations and applications require significant attention before full automation of UAVs and potential cooperation between UAVs and humans come to fruition.Comment: 36 pages, 304 references, 19 Figure

    SpiNNaker - A Spiking Neural Network Architecture

    Get PDF
    20 years in conception and 15 in construction, the SpiNNaker project has delivered the world’s largest neuromorphic computing platform incorporating over a million ARM mobile phone processors and capable of modelling spiking neural networks of the scale of a mouse brain in biological real time. This machine, hosted at the University of Manchester in the UK, is freely available under the auspices of the EU Flagship Human Brain Project. This book tells the story of the origins of the machine, its development and its deployment, and the immense software development effort that has gone into making it openly available and accessible to researchers and students the world over. It also presents exemplar applications from ‘Talk’, a SpiNNaker-controlled robotic exhibit at the Manchester Art Gallery as part of ‘The Imitation Game’, a set of works commissioned in 2016 in honour of Alan Turing, through to a way to solve hard computing problems using stochastic neural networks. The book concludes with a look to the future, and the SpiNNaker-2 machine which is yet to come
    • 

    corecore