47,531 research outputs found

    Document Classification Systems in Heterogeneous Computing Environments

    Get PDF
    Datacenter workloads demand high throughput, low cost and power efficient solutions. In most data centers the operating costs dominates the infrastructure cost. The ever growing amounts of data and the critical need for higher throughput, more energy efficient document classification solutions motivated us to investigate alternatives to the traditional homogeneous CPU based implementations of document classification systems. Several heterogeneous systems were investigated in the past where CPUs were combined with GPUs and FPGAs as system accelerators. The increasing complexity of FPGAs made them an interesting device in the heterogeneous computing environments and on the other hand difficult to program using Hardware Description languages. We explore the trade-offs when using high level synthesis and low level synthesis when programming FPGAs. Using low level synthesis results in less hardware resource usage on FPGAs and also offers the higher throughput compared to using HLS tool. While using HLS tool different heterogeneous computing devices such as multicore CPU and GPU targeted. Through our implementation experience and empirical results for data centric applications, we conclude that we can achieve power efficient results for these set of applications by either using low level synthesis or high level synthesis for programming FPGAs

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    A Review on Software Architectures for Heterogeneous Platforms

    Full text link
    The increasing demands for computing performance have been a reality regardless of the requirements for smaller and more energy efficient devices. Throughout the years, the strategy adopted by industry was to increase the robustness of a single processor by increasing its clock frequency and mounting more transistors so more calculations could be executed. However, it is known that the physical limits of such processors are being reached, and one way to fulfill such increasing computing demands has been to adopt a strategy based on heterogeneous computing, i.e., using a heterogeneous platform containing more than one type of processor. This way, different types of tasks can be executed by processors that are specialized in them. Heterogeneous computing, however, poses a number of challenges to software engineering, especially in the architecture and deployment phases. In this paper, we conduct an empirical study that aims at discovering the state-of-the-art in software architecture for heterogeneous computing, with focus on deployment. We conduct a systematic mapping study that retrieved 28 studies, which were critically assessed to obtain an overview of the research field. We identified gaps and trends that can be used by both researchers and practitioners as guides to further investigate the topic

    Context-Aware Information Retrieval for Enhanced Situation Awareness

    No full text
    In the coalition forces, users are increasingly challenged with the issues of information overload and correlation of information from heterogeneous sources. Users might need different pieces of information, ranging from information about a single building, to the resolution strategy of a global conflict. Sometimes, the time, location and past history of information access can also shape the information needs of users. Information systems need to help users pull together data from disparate sources according to their expressed needs (as represented by system queries), as well as less specific criteria. Information consumers have varying roles, tasks/missions, goals and agendas, knowledge and background, and personal preferences. These factors can be used to shape both the execution of user queries and the form in which retrieved information is packaged. However, full automation of this daunting information aggregation and customization task is not possible with existing approaches. In this paper we present an infrastructure for context-aware information retrieval to enhance situation awareness. The infrastructure provides each user with a customized, mission-oriented system that gives access to the right information from heterogeneous sources in the context of a particular task, plan and/or mission. The approach lays on five intertwined fundamental concepts, namely Workflow, Context, Ontology, Profile and Information Aggregation. The exploitation of this knowledge, using appropriate domain ontologies, will make it feasible to provide contextual assistance in various ways to the work performed according to a user’s taskrelevant information requirements. This paper formalizes these concepts and their interrelationships
    corecore