

Nasiri, N., Colangelo, P., Segal, O., Margala, M., and Vanderbauwhede, W.

(2017) Document Classification Systems in Heterogeneous Computing

Environments. In: 26th International Workshop on Power and Timing

Modeling, Optimization and Simulation (PATMOS 2016), Bremen,

Germany, 21-23 Sept 2016, pp. 291-295. ISBN 9781509007332

(doi:10.1109/PATMOS.2016.7833702)

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/138187/

Deposited on: 23 March 2017

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/PATMOS.2016.7833702
http://eprints.gla.ac.uk/138187/
http://eprints.gla.ac.uk/138187/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Document Classification Systems in
Heterogeneous Computing Environments

Nasibeh Nasiri, Philip Colangelo, Oren Segal, Martin Margala

Electrical and Computer Engineering Department

University of Massachusetts Lowell

Lowell, USA

Nasibeh_Nasiri@uml.edu; Philip_Colangelo@student.uml.edu;
Oren_Segal@student.uml.edu; Martin_Margala@uml.edu

Wim Vanderbauwhede

School of Computing Science

University of Glasgow

Glasgow, UK

Wim.Vanderbauwhede@glasgow.ac.uk

Abstract—Datacenter workloads demand high throughput,
low cost and power efficient solutions. In most data centers
the operating costs dominates the infrastructure cost. The ever
growing amounts of data and the critical need for higher
throughput, more energy efficient document classification
solutions motivated us to investigate alternatives to the
traditional homogeneous CPU based implementations of
document classification systems. Several heterogeneous
systems were investigated in the past where CPUs were
combined with GPUs and FPGAs as system accelerators. The
increasing complexity of FPGAs made them an interesting
device in the heterogeneous computing environments and on
the other hand difficult to program using Hardware
Description languages. We explore the trade-offs when using
high level synthesis and low level synthesis when
programming FPGAs. Using low level synthesis results in less
hardware resource usage on FPGAs and also offers the higher
throughput compared to using HLS tool. While using HLS
tool different heterogeneous computing devices such as
multicore CPU and GPU targeted. Through our
implementation experience and empirical results for data
centric applications, we conclude that we can achieve power
efficient results for these set of applications by either using
low level synthesis or high level synthesis for programming
FPGAs.

I. INTRODUCTION

The explosive growth of data is evident in the increase in
network usage over the internet in the past decade or so.
Different types of data such as video, image, html and emails
all need to be searched, classified and filtered. The need for
efficient methods to sift through the massive amounts of
information that is generated on a daily basis motivates us to
search for better implementations in terms of speed, energy
and cost.

 Heterogeneous systems have the potential to be more
power efficient than their homogenous counterparts [1]
because of the ability to use specialized hardware to tackle
different types of algorithms. FPGAs, GPUs, and CPUs are
three of the major off-the-shelf computing platforms which
should be considered in heterogeneous system design, each
with its own set of merits.

CPUs are general purpose processing units that have
evolved to be relatively efficient at high level generated code
which translates to instructions that can be branched, with
several levels of cache hierarchy that can assist in extracting
locality from code and data. GPUs are known for their ability
as massive number crunchers [2][3] using large SIMD
vectorized units to parallelize similar code that runs on large
amounts of data. FPGAs are reprogrammable integrated
circuits which can be tailored and customized for a specific
application. There are many programmable building blocks in
the state of the art FPGAs including ALMs, variable precision
DSPs, on-chip memory blocks, high speed transceivers, etc.
In addition, FPGAs have low core clock frequency resulting in
low power architectures and high memory bandwidth, which
makes them a logical choice for data-centric applications.

One of the main issues delaying wide spread adoption of
FPGAs in data-centric applications is the difficulty in
programming them. FPGAs are programmed with Hardware
Description Languages (HDLs) which require good
knowledge of the underlying hardware and a significant
engineering effort, when compared to high level software
programming. Algorithm design in HDLs requires the
implementation of all the communications and service layers
that are provided with no extra effort to a high level
programmer through operating system services and drivers.
For FPGAs to be considered as standard heterogeneous system
components they need to be accessible as normal devices in an
operating system environment. In addition, maintaining a
single code base across different devices and platforms serves
an important software principle of code reuse.

OpenCL [7] is an open standard framework for parallel
programming of heterogeneous computing platforms in which
data and task-based parallel programming models are
supported. The introduction of OpenCL for FPGAs opens new
possibilities for the usage of FPGAs, as standard system
accelerators.

In this work, the low level synthesis results on DE5-NET
FPGA board are collected for two data centric applications. In
addition, these two classification systems are implemented in
OpenCL on a DE5-NET FPGA board, K40C GPU and a HP
DL180 G6 with dual Intel Xeon L5630 2.13GHz processors.
The implementations of these classification systems are
compared in terms of power consumption and performance
while running on synthetic data sets.

291

There are four main contributions to this paper. The first
contribution of this paper is the development of a novel
integrated parser and scorer for two document classification
systems [8]. Using the bag of words, meaning processing the
documents on the host side, in the previous publications has
been the performance bottleneck. The second contribution of
this paper is the programming the DE5-Net FPGA board using
both low level synthesis and high level synthesis. The third
contribution of this work is the development and investigation
of two cross platform high performance document
classifications OpenCL code base for CPUs, GPUs and
FPGAs with minimal code variations. The fourth one is the
comparison study of two different document classification
systems and evaluating the efficiency of each of these
implemented systems.

The remainder of this work is organized as follows: In
section II and III we discuss related work and HLS versus low
level synthesis for FPGAs. The document classification
system is explained in details in section IV. V. The
HDL implementation of document classifications are
elaborated in section V. Profile memory and the provided data
to this memory are explained in section VI. We present and
analyze the results obtained from the Dual Xeon processor,
K40C GPU and FPGA implementations in section VII and
finally in section VIII we draw conclusions.

II. RELATED WORK

Previous research on FPGA-CPU-GPU implementations
of document classification or filtering has shown that FPGAs
offer power efficient implementations compared to the CPU
and GPU implementations. The following studies investigated
the feasibility of document classification. In [4], the authors
programmed an FPGA using Mitrion-C but the bag of words
is used and was the bottleneck for the further parallelization.
In [5], the authors also developed a multi-FPGA converted
bag of words system in which performance of the system
yielded a tenfold speedup when combined with a conventional
CPU and excellent cost-performance as well as energy
consumed for the calculation. Similarly in [6], the authors
assume that documents have been converted to the bag-of-
words format and focus only on the document scoring portion
of the application.

In this paper, we integrated the scoring portion with a
parser and scored them document by document against
different profiles. We have investigated two different
implementations. The first implementation uses a
classification system based on a Naïve Bayesian Classifier and
a finite state machine based parsing method to classify HTML
documents. The second one uses the same classification
method but with a sliding window based parsing method.

Handwritten Verilog implementations of these applications
are used to program the FPGA and compared to the results of
high level synthesis. OpenCL is used to parallelize not only
the scoring part but also the parser part of document
classification systems and targeted three platforms (FPGA,
GPU and multi-core CPU) with the same OpenCL code for
each alternative classification system with only minor
optimizations and changes. Thus the need for the pains taking

development of a separate FPGA model in low level RTL is
removed when using OpenCL implementations.

III. HIGH LEVEL SYNTHESIS VS LOW LEVEL STNTHESIS

Traditional FPGA design involves describing state
machines, data paths, arbitration, interfaces to external
memory, buffering etc. using HDLs. A knowledgeable
engineer would describe the system specification down to
Register Transfer Level. The FPGA programmer takes care of
synthesis, place and route; timing closures etc. to complete the
design flow. Verification of design at various steps of design
flow to remove the discrepancies of design and specification is
necessary. These steps need significant engineering effort and
good knowledge of hardware to utilize the available hardware
resources of the target FPGA.

On the other hand in high level programming of FPGAs,
the compiler takes care of all these steps and constraints.
Consequently the programmer can concentrate on the
optimization of the design without getting involved in the
RTL details of the design.

The increasing complexity of FPGAs made them an
attractive device in the heterogeneous computing
environments but programming these devices has become
more challenging using traditional approaches. For nowadays
application demand, the need for HLS is inevitable. HLS is a
new trend in programming FPGAs and evolving significantly.
HLS improves the design productivity by automating the
refinement from the algorithm level to Register Transfer
Level. When HLS is used to describe a system, the number of
code lines is usually reduced which resulting in less mistakes
and making the debugging the code faster. The verification
time sometimes exceeds the design time; although HLS
generates some testbenches to automatically verify the
generated HDL design.

There are some metrics in order to pick an HLS such as
learning curve, amount of effort to write source code, designer
experience, documentation and tool capabilities. There have
been different HLS tools with different trade-offs. Since in
this study, the aim is to target different platforms with single
code, the Altera OpenCL HSL [8] was chosen. OpenCL
provides a single design environment for heterogeneous
systems. Altera OpenCL translates the high level code into a
pipelined hardware circuit in where each stage of the pipeline
executes a different thread. In OpenCL a C based kernel is
replicated and run in parallel on multiple hardware compute
units. Each parallel run is assigned an ID which allows the
kernel work on a subset of the data that is associated with it.

IV. DOCUMENT CLASSIFICATION SYTEMS

A document classification application classifies a stream
of HTML (or email) documents in “relevant” or “not
relevant”, where relevance is determined by a profile of
keywords provided by the user or trained using some set of
data. There are three stages for classification of documents
against different profiles:

1. Pre-processing for training
2. Training
3. Classification of HTML documents.

292

In the pre-processing stage, all HTML tags are stripped
off, all stop words, i.e. words that appear frequently but have
low content discriminating power, are removed from each
document. During the training stage, a model is built based on
the characteristics of each category in a pre-classified set of
documents. Classification can be done using Naïve Bayesian
classifier [10]. The Naive Bayesian classifier is based on the
Bayesian theorem which assumes attributes have independent
distributions. A Naive Bayesian model is fast and space
efficient to build, with no complicated iterative parameter
estimation which makes it particularly useful for very large
datasets. Despite its simplicity, the Naive Bayesian classifier
often does surprisingly well and is widely used because it
often outperforms more sophisticated classification methods.
Two different implementations of document classification are
implemented in this work in a heterogeneous computing
environment and compared in terms of throughput and
performance per watt in the results section. The detailed
implementation and steps for each of these implementations
are elaborated in this section.

In the first implementation, the stream of HTML
documents is parsed by going through a finite state machine,
compressed and stored on a document-by-document basis.
Bigrams and trigrams (group of two and three adjacent words)
are created to improve the accuracy of the document
classification. For example “cheap” and “Rolex” don’t exist in
the profile but “cheap Rolex” a bigram does exist in the
profile. In order to accelerate the look-up of the terms (i.e.
unigrams, bigrams and trigrams), we use a Bloom Filter to
reject terms not present in the profile. The Bloom Filter, stored
in the on-chip memory, determines the membership of a term
in the profile however some false positives are possible. If the
Bloom Filter returns a hit, the term will be looked up in the
profile memory residing in (off-chip) SDRAM. The hit rate of
the Bloom Filter is proportional to the size of profile.

The flow of the implemented design follows below:

1. The input stream will go through the parser and once a
word is detected and encoded using compression coding, it
will be sent for scoring.

2. For higher precision filtering purpose the bigram and
trigram of each word is generated and were looked for in
the profile.

3. N hashing function has been used to evaluate the
membership of each unigram, bigram or trigram so at most
N×3 accesses are needed to the Bloom Filter(s).

4. If the retuned values of N hashing functions are all one
for each unigram, bigram or trigram, this can be a sign of
existence of these word(s) in the profile so the next step is
looking up in the profile however false positives are
possible.

5. When it is required to refer to the profile, the rest bits of
the hit word are compared with the rest bits of the profile
then if they are matched, the weight bits of this element is
accumulated to the score.

6. The final result of classification will be made using
naïve Bayesian classifier.

The second classification approach parses the HTMLs
differently and skips generating the bigrams and trigrams [11].
The flow of the implemented design follows below:

1. The input stream will go through a window and the
output of window is encoded using compression coding, it
will be sent for scoring.

2. N hashing function has been used to evaluate the
membership of the outputs of parser.

3. If the retuned values of N hashing functions are all one,
the next step is looking up in the profile.

4. When it is required to refer to the profile, the rest bits of
the hit word are compared with the rest bits of the profile,
then if they are matched, the weight bits of this element is
accumulated to the score.

5. The final result of the classification will be made using a
Naïve Bayesian classifier.

In previous implementations we had to use background
processing of data i.e. parsing on CPU effectively decreasing
overall performance of the system. The current algorithm
implementations allow us to feed real time data e.g. HTML or
network traffic into the accelerator. In this paper, for the
purpose of testing the system, we used predefined data sets as
explained in section VI.

V. HDL IMPLEMENTATION OF DOCUMENT CLASSIFICATION

The HTML documents are stored in one of the SDRAM
DDR3 memories. The second DDR3 memory is reloaded in
every experiment with the target profile data. The HDL
implementation of parsing and scoring are deeply pipelined.
In order to remove the performance bottleneck of slow PCIe
data transfer rate to the FPGA, PCIe is interfaced to DDR3 in
order to transfer the data back and forth to DDR3 memory.
The HTML documents are transferred to the first DDR3 and
also profile data set to the second DDR3. Final score for each
document is written to the second DDR3 memory as well.

Two different parsers are implemented in this work. The
first parser works based on a finite state machine. The goal is
to discard the HTML tags and parse the document and
generate bigram (two adjacent words) and trigram (three
adjacent words) for each word and send it to be scored. Each
character is compressed to a 5-bit code, which results in a
more efficient design. A sliding window based parser [11] is
replaced by the finite state machine based parser in the second
implementation.

Some Bloom Filters, highly scalable data structures, are
used for membership testing and speeding up the look ups
from the profile which is residing in the external memory for
both implementations. The bloom filters avoid most of the
unnecessary accesses to the external memory; however some
false positives are possible. The Bloom Filters are
implemented using distributed Block RAMs on the FPGA.

A Bloom Filter can be implemented and replicated with
limited number of hash functions. We have used two hash
functions in our experiments for these implementations.

Two hashing functions are used for each unigram, bigram
and trigram in order to look them up in the Bloom Filter

293

memories. If both accesses of any word, bigram or trigram are
hit then the appropriate address will be generated to be looked
up in the external memory.

VI. DATA SET AND PROFILE

Ideally the performance of the implemented application
should be evaluated using real world input data but since our
access to the real data sets was limited, we relied on synthetic
document collections that are statistically similar to the real-
world collections. To generate synthetic data sets, we used
summary information from several document collections
(TREC Aquaint). These collections provide good coverage on
the impact of different document lengths and sizes on filtering
time. TREC Aquaint has 1,033,461 documents in which with
the average document length of 437 words and the distribution
of unique terms is about 169.

As explained in section V, the profile which is stored on
off-chip memory can be loaded in every experiment with
different weights obtained from different algorithms for each
of the existing feature in the profile. In our experiments we
have used the naïve Bayesian Classification algorithm in order
to classify the documents against a profile data set. Profile
files with different content types implied by their names:
Entertainment Financial, Entertainment International,
Entertainment Political, Entertainment Washington, Sports
Financial, Sports International, Sports Political, Sport
Washington, USA Financial, USA International, USA
Political and USA Washington have been used to test the
implementation in different platforms.

VII. EXPERIMENTS AND RESULTS

The following devices were used to test execution and
power efficiency of our applications:

1) HP DL180 G6 with dual Intel Xeon L5630 2.13GHz
processors and 144GB DDR3, 1333MHz RAM

2) GPU – NVIDIA K40C

4) FPGA – DE5-NET board, Altera Stratix V

The host system was equipped with 8GB RAM connected
through a PCIe connection to the host system. The system was
running Linux Centos 6.4. Total system power is measured
using a watts-up pro power meter connected to the power
outlet of the system. Specialized scripts monitor the life time
of the benchmarked processes and the average system power
consumption during their execution.

Kernel execution time and performance per watt of the
document classification applications are shown in Table 1 for
two different implementations. Whole system power
measurements were obtained using a watts-up pro power
meter. Average power consumption while running in CPU
mode is 181W to 211W, in GPU mode is 91W to 100W and in
FPGA mode is 65W to 90W. The results show that the power
efficiency of the fastest FPGA version is slightly higher than
the fastest CPU version.

The results of the document classifications using Bayesian
classification show that the highest throughput was obtained
while running on FPGA with Bloom Filter and finite state

machine based parsing method. The GPU is not fully utilized
in our experiments since the experiments with the same data
size are repeated on GPU.

Table 1. Kernel execution time and performance per watt on FPGA, CPU,
GPU

Device
Kernel Execution

Time (s)

Performance
per

watt(MB/Watts)

No Bloom
Filter

Bayesian -
FSM

FPGA
(Verilog)

0.46 8.36

FPGA
(HLS)

0.7 4.51

CPU 0.81 1.47

GPU 0.57 4.32

Bloom
Filter

Bayesian-
FSM

FPGA
(Verilog)

0.33 11.66

FPGA
(HLS)

0.55 4.92

CPU 0.73 1.64

GPU 0.57 4.59

No Bloom
Filter-

Bayesian-
Window

FPGA
(Verilog)

1.7 2.26

FPGA
(HLS)

3.62 0.86

CPU 4.03 0.32

GPU 3.33 0.75

Bloom
Filter-

Bayesian-
Window

FPGA
(Verilog)

0.62 6.20

FPGA
(HLS)

3.12 1.14

CPU 3.38 0.38

GPU 3.21 0.82

As we see in Table 1, the implementation using the
Bayesian Classifier with Bloom Filter has the highest
performance and performance per watt compared to the other
variation of implementations.

The hardware utilization of low level synthesis is reported
in Table 2. The low level synthesis has its own merits in terms
of low hardware resource usage on FPGA and the fastest
implementation. The low level synthesis results show that the
same application runs from 1.5 to 5 times faster compared to
those of high level synthesis implementations.

The hardware utilization of the FPGA platform using high
level synthesis is reported in Table 3. The results were
obtained by combining the auto resource-driven optimizer (O3
compile option- default value of 85% utilization) and manual
optimizations on each kernel in an effort to reach the best
possible performance. Note that even though memory blocks
usage looks similar on both Bloom and non-Bloom versions,
the Bloom version uses Local_mem_resources and
Local_mem_ram_resources while the non-bloom does not use
any. The only manual optimizations and code changes that
were used in the FPGA version were the restrict keyword and
pragma lines used for things such as loop unrolling and
workgroup size settings. To obtain the best performing Bloom
kernel version we ran our program with different workgroup

294

sizes starting from 16 to 2048 (only powers of two). The
maximum speed ups for the FPGA Bloom Filter-Bayesian-
FSM and Bloom Filter-Bayesian-Window implementation
were achieved when the workgroup size was set to 1024 this is
due to the fact that initializing the local memory for the Bloom
Filter is done once in the kernel, on a per workgroup basis by
copying the Bloom Filter from global memory.When work
group sizes are small, the overhead of local memory
initializations and memory copies offsets the advantages of
using local memory. On a CPU or GPU setting a workgroup
size is limited and tied to the specific hardware device
implementation. On the other hand, on the FPGA kernel
version, we added a single pragma line
(max_work_group_size) which instructs the compiler to
generate hardware that will be able to efficiently handle bigger
workgroup sizes, which led to significant speed gains. This
serves as an example of the advantage of using an FPGA for
algorithm design combined with the ease of OpenCL
development.

Table 2. Logic utilization of document classification on DE5-NET FPGA
board using low level synthesis

Logic
utilization

Dedicated
logic reg.

Memory
blocks

DSP
blocks

No Bloom Filter
Bayesian -FSM

11% 10% 2% 0

Bloom Filter
Bayesian-FSM

12% 11% 3% 0

No Bloom Filter-
Bayesian-
Window

15% 10% 2% 0

Bloom Filter-
Bayesian-
Window

16% 12% 4% 0

Table 3. Logic utilization of document classification on DE5-NET FPGA
board using high level synthesis

Logic
utilization

Dedicated
logic reg.

Memory
blocks

DSP
blocks

No Bloom Filter
Bayesian -FSM

86% 39% 78% 13%

Bloom Filter
Bayesian-FSM

68% 38% 72% 8%

No Bloom Filter-
Bayesian-
Window

75% 43% 65% 7%

Bloom Filter-
Bayesian-
Window

63% 41% 55% 4%

VIII. CONCLUSION

Our experiments show that FPGAs are a promising
platform for classification of documents. They not only
provide high throughput, but also high performance/watt when
compared to GPUs and CPUs. High level development of
FPGA designs is making FPGAs an attractive platform for

data-centric applications even though it is not as efficient as
handwritten Verilog implementation. The most perplexing fact
is that an FPGA running at a clock frequency that is an order
of magnitude lower than CPUs and GPUs is able to
outperform them. When it comes to power efficiency
(performance per watt), however, both CPU and GPU lag
behind the FPGA. Our future work will be constructing
profiles dynamically according to the newly coming input. We
also plan on investigating several machine learning algorithms
to construct the profile and update it automatically.

ACKNOWLEDGMENTS

We would like to thank Altera, Terrasic and NVidia for
their generous hardware and software donations.

REFERENCES

[1] Chung, Eric S., et al. "Single-chip heterogeneous computing: Does the
future include custom logic, FPGAs, and GPGPUs? ," Proceedings of
the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2010.

[2] Reyes, R., Lopez, I, Fumero, J.J., and De Sande, F., "Directive-based
Programming for GPUs: A Comparative Study," High Performance
Computing and Communication & 2012 IEEE 9th International
Conference on Embedded Software and Systems (HPCC-ICESS), on
pp.410,417, 25-27 June 2012.

[3] Huang, S., Xiao, S., and Feng, W., "On the energy efficiency of graphics
processing units for scientific computing," Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on ,
pp.1,8, 23-29 May 2009

[4] Vanderbauwhede, W., Azzopardi, L., and Moadeli, M., "FPGA-
accelerated Information Retrieval: High-efficiency document filtering ,"
Field Programmable Logic and Applications, 2009. FPL 2009.
International Conference on, pp.417-422, Sept 2009.

[5] Vanderbauwhede, W., Frolov, A., Rahul Chalamalasetti, S., and
Margala,M., “A Hybrid CPU-FPGA System for High Throughput
(10Gb/s) Streaming Document Classification ,” in Proceedings of 4th
International Symposium on Highly Efficient Accelerators and
Reconfigurable Technologies (HEART), June 2013.

[6] Chen, D., and Singh, D., "Invited paper: Using OpenCL to evaluate the
efficiency of CPUS, GPUS and FPGAS for information filtering," Field
Programmable Logic and Applications (FPL), 22nd International
Conference on, pp.5,12, August 2012.

[7] Khronos OpenCL Working Group. "OpenCL-The open standard for
parallel programming of heterogeneous systems [Online]. DOI=
http://www. khronos.org/opencl,” 2011.

[8] Nasibeh Nasiri, Oren Segal, Martin Margala, Wim Vanderbauwhede,
Sai Rahul Chalamalasetti, “High Level Programming of Document
Classification Systems for Heterogeneous Environments using
OpenCL,” ACM International Symposium on Field-Programmable Gate
Array, 22 – 24 February 2015

[9] Altera SDK for OpenCL. http://www.altera.com/literature/lit-opencl-
sdk.js

[10] Sahami, M. “A Bayesian approach to filtering junk e-mail,” Proceedings
of AAAI-98 Workshop on Learning from Text Categorization. 1998

[11] Gordon V. Cormack, Mark D. Smucker, Charles L. A. Clarke, “Efficient
and Effective Spam Filtering and Re-ranking for Large Web Datasets,”
Information retrieval 14 (5), 441-465, 2011

295

