61,159 research outputs found

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    A user evaluation of hierarchical phrase browsing

    Get PDF
    Phrase browsing interfaces based on hierarchies of phrases extracted automatically from document collections offer a useful compromise between automatic full-text searching and manually-created subject indexes. The literature contains descriptions of such systems that many find compelling and persuasive. However, evaluation studies have either been anecdotal, or focused on objective measures of the quality of automatically-extracted index terms, or restricted to questions of computational efficiency and feasibility. This paper reports on an empirical, controlled user study that compares hierarchical phrase browsing with full-text searching over a range of information seeking tasks. Users found the results located via phrase browsing to be relevant and useful but preferred keyword searching for certain types of queries. Users experiences were marred by interface details, including inconsistencies between the phrase browser and the surrounding digital library interface

    Thesaurus-based index term extraction for agricultural documents

    Get PDF
    This paper describes a new algorithm for automatically extracting index terms from documents relating to the domain of agriculture. The domain-specific Agrovoc thesaurus developed by the FAO is used both as a controlled vocabulary and as a knowledge base for semantic matching. The automatically assigned terms are evaluated against a manually indexed 200-item sample of the FAO’s document repository, and the performance of the new algorithm is compared with a state-of-the-art system for keyphrase extraction

    A User-Centered Concept Mining System for Query and Document Understanding at Tencent

    Full text link
    Concepts embody the knowledge of the world and facilitate the cognitive processes of human beings. Mining concepts from web documents and constructing the corresponding taxonomy are core research problems in text understanding and support many downstream tasks such as query analysis, knowledge base construction, recommendation, and search. However, we argue that most prior studies extract formal and overly general concepts from Wikipedia or static web pages, which are not representing the user perspective. In this paper, we describe our experience of implementing and deploying ConcepT in Tencent QQ Browser. It discovers user-centered concepts at the right granularity conforming to user interests, by mining a large amount of user queries and interactive search click logs. The extracted concepts have the proper granularity, are consistent with user language styles and are dynamically updated. We further present our techniques to tag documents with user-centered concepts and to construct a topic-concept-instance taxonomy, which has helped to improve search as well as news feeds recommendation in Tencent QQ Browser. We performed extensive offline evaluation to demonstrate that our approach could extract concepts of higher quality compared to several other existing methods. Our system has been deployed in Tencent QQ Browser. Results from online A/B testing involving a large number of real users suggest that the Impression Efficiency of feeds users increased by 6.01% after incorporating the user-centered concepts into the recommendation framework of Tencent QQ Browser.Comment: Accepted by KDD 201

    Methodologies for the Automatic Location of Academic and Educational Texts on the Internet

    Get PDF
    Traditionally online databases of web resources have been compiled by a human editor, or though the submissions of authors or interested parties. Considerable resources are needed to maintain a constant level of input and relevance in the face of increasing material quantity and quality, and much of what is in databases is of an ephemeral nature. These pressures dictate that many databases stagnate after an initial period of enthusiastic data entry. The solution to this problem would seem to be the automatic harvesting of resources, however, this process necessitates the automatic classification of resources as ‘appropriate’ to a given database, a problem only solved by complex text content analysis. This paper outlines the component methodologies necessary to construct such an automated harvesting system, including a number of novel approaches. In particular this paper looks at the specific problems of automatically identifying academic research work and Higher Education pedagogic materials. Where appropriate, experimental data is presented from searches in the field of Geography as well as the Earth and Environmental Sciences. In addition, appropriate software is reviewed where it exists, and future directions are outlined
    corecore