7 research outputs found

    Synthesis, diversification and biomedical applications of 4,5-substitued N-aminoimidazol-2-ones

    Full text link
    In peptide-based medicinal chemistry, mimicry of turn conformations is important because of the significance of such secondary structures for molecular recognition. In this context, N-aminoimidazol-2-one (Nai) residues have demonstrated ability to mimic the central residue of turn conformers. Moreover, potential to functionalize the 4- and 5-positions of the Nai heterocycle offer opportunities to add and orient side chain functionalities with constrained c-geometry. Methods have been developed to employ Nai residues for peptide mimicry. Previously, Nai dipeptide esters with substituents at the imidazol-2-one 4-position were obtained as racemic mixtures. By employing alternative C-terminal groups, epimerization has now been minimized. Functionalization of the Nai 5-position after cyclization has also been achieved by novel chemistry. For example, (4-Me, 5-aldehyde)Nai residues were obtained by 5-position formylation. The aldehyde was then reduced and oxidized to provide alcohol and acid functionality. Reductive aminations on (4-Me, 5-aldehyde)Nai residues using different primary and secondary amines and amino methylation of (4-Me)Nai residues were also used to prepare constrained diaminobutyric acid analogs. In the interest to prepare Nai analogs that can serve as constrained phenylalanine residues, palladium-catalyzed chemistry was developed to cross-couple different aryl iodides at the 5-position. In model peptides, the (4-Me, 5-aryl)Nai residues were predicted by molecular dynamic calculations to be located at the i+1 position of type II’ ÎČ-turn conformations with the aryl side chain positioned in the gauche (–). The synthesis of biologically relevant Nai peptides was next explored using methods for accessing enantioenriched residues and conditions for their 5-position arylation. Peptide derivatives of growth hormone releasing peptide-6 (GHRP-6) were targeted using the Nai residues because the corresponding semicarbazide analogs had exhibited selective and relatively high binding affinity for the cluster of differentiation receptor (CD36) receptor and potential to mediate macrophage-driven inflammation in conditions leading to age-related macular degeneration, atherosclerosis and angiogenesis. Previous studies with GHRP-6 analogs demonstrated that replacement of Trp4 with a semicarbazide possessing an aromatic side chain favored a turn conformation and selective CD36 binding affinity. Solid-phase methodology was developed to synthesize [(4-Me, 5-Aryl)Nai4]-GHRP-6 analogs and used to prepare four different Nai peptides on Rink amide resin. All four analogs were effective at mediating nitric oxide (NO) overproduction in macrophages cells treated with a Toll-like receptor 2 (TLR2) agonist. Although biological evaluation of the [(4-Me,5-Aryl)Nai4]-GHRP-6 analogs is still being performed, their ability to modulate NO overproduction strongly indicated backbone and side chain conformational requirements for biological activity. In sum, this thesis has provided effective methods for preparing novel constrained peptide analogs for mimicry of the backbone and side chain geometry in ÎČ-turns. Enantiomerically enriched Nai residues were synthesized, introduced into peptide sequences, and functionalized at the 4- and 5-positions. Employment of the 4,5-disubstituted Nai analogs in the study of peptide medicinal chemistry offers powerful potential for exploring structure-activity relationships to identify and replicate biologically active conformers.Le dĂ©veloppement de mimes de tours peptidiques pose un intĂ©rĂȘt particulier en chimie mĂ©dicinale, en raison de leur importance dans la reconnaissance molĂ©culaire. Dans ce contexte, les rĂ©sidus N-aminoimidazol-2-one (Nai) ont dĂ©montrĂ© une tendance Ă  occuper la position centrale de repliements peptidiques. De plus, la prĂ©sence de l’unitĂ© imidazolone offre un potentiel de fonctionnalisation en position 4 et 5 pouvant jouer le rĂŽle de chaĂźnes latĂ©rales rigidifiĂ©es dans l’espace χ. Des mĂ©thodes ont Ă©tĂ© dĂ©veloppĂ©es pour rendre possible l’utilisation de rĂ©sidus Nai en chimie peptidique. Par le passĂ©, des esters de dipeptide Nai possĂ©dant un substituant Ă  la position 4 de l’hĂ©tĂ©rocycle ont Ă©tĂ© synthĂ©tisĂ©s de maniĂšre racĂ©mique. L’utilisation de groupement C-terminaux a permis de grandement rĂ©duire l’épimĂ©risation due Ă  l’utilisation de base forte utilisĂ©e durant l’étape de cyclisation. La fonctionnalisation de la position 5 du cycle aprĂšs la cyclisation a aussi Ă©tĂ© rendue possible par le dĂ©veloppement de nouvelles conditions rĂ©actionnelles. Par exemple, des conditions de formylation ont donnĂ© des rĂ©sidus (4-Me, 5-AldĂ©hyde)Nai. La fonction aldĂ©hyde a Ă©tĂ© rĂ©duite et oxydĂ©e, donnant accĂšs a des fonctions alcool et acide carboxylique. L’amination rĂ©ductrice du squelette (4-Me, 5-AldĂ©hyde)Nai en utilisant des amines primaires et secondaires ainsi que l’amino-mĂ©thylation de rĂ©sidus (4-Me)Nai ont donnĂ© accĂšs Ă  des rĂ©sidus d’acide diaminobutyrique rigidifiĂ©s. Dans le but de prĂ©parer des analogues Nai pouvant servir de mimes rigidifiĂ©s de rĂ©sidus phĂ©nylalanine, la catalyse au palladium a rendu possible l’installation de groupements 5-aryle par couplage croisĂ© avec diffĂ©rents iodoaryles. Dans un modĂšle de peptide, le rĂ©sidu (4-Me, 5-aryl)Nai a Ă©tĂ© soumis Ă  une analyse par dynamique molĂ©culaire qui a rĂ©vĂ©lĂ© le positionnement de la portion Nai Ă  la position i+1 d’un tour ÎČ de type II’, avec la chaine latĂ©rale aryle adoptant une conformation gauche (-). Ayant en main des conditions de synthĂšse Ă©nantioenrichie ainsi que de diversification de la position 5, la construction de peptides Nai possĂ©dant un intĂ©rĂȘt biologique a Ă©tĂ© entreprise. Des dĂ©rivĂ©s du peptide Growth hormone releasing peptide-6 (GHRP-6) ont Ă©tĂ© ciblĂ©s car les analogues semicarbazide correspondant ont prĂ©cĂ©demment dĂ©montrĂ© avoir Ă  la fois de la sĂ©lectivitĂ© et une affinitĂ© relativement grande pour le Cluster of differentiation receptor (CD36). Ils ont ainsi le potentiel de moduler l’inflammation attribuable aux macrophages dans des conditions menant Ă  la dĂ©gĂ©nĂ©rescence maculaire liĂ©e Ă  l’ñge, l’athĂ©rosclĂ©rose et l’angiogenĂšse. Des Ă©tudes prĂ©cĂ©dentes ont dĂ©montrĂ© que le remplacement du rĂ©sidu Trp4 du GHRP-6 par un semicarbazide possĂ©dant une chaĂźne latĂ©rale aromatique favorisait l’adoption d’un repliement de la chaĂźne peptidique et une affinitĂ© sĂ©lective envers le rĂ©cepteur CD36. Une mĂ©thode de synthĂšse sur phase solide d’analogues [(4-Me, 5-Aryle)Nai4]-GHRP-6 a Ă©tĂ© dĂ©veloppĂ©e et utilisĂ©e pour synthĂ©tiser quatre diffĂ©rents peptides Nai en utilisant la rĂ©sine Rink amide. Les quatre analogues se sont montrĂ©s efficaces Ă  rĂ©duire la surproduction d’oxide nitrique (NO) dans les cellules macrophages traitĂ©es avec un agoniste du Toll-like receptor 2 (TLR2). MalgrĂ© le fait que l’évaluation biologique des analogues [(4-Me, 5-Aryle)Nai4]-GHRP-6 soit toujours en cours, leur habilitĂ© Ă  moduler la surproduction d’oxide nitrique montre qu’ils possĂšdent la bonne gĂ©omĂ©trie quant Ă  la chaĂźne principale et la chaĂźne latĂ©rale aromatique pour interagir avec le rĂ©cepteur. En somme, la prĂ©sente thĂšse a fourni des mĂ©thodes efficaces de synthĂšse de nouveaux analogues de peptides rigidifiĂ©s pour mimer les chaĂźnes principale et latĂ©rales de tours ÎČ. Les rĂ©sidus Nai Ă©nantioenrichis ont Ă©tĂ© synthĂ©tisĂ©s, introduits dans des sĂ©quences peptidiques d’intĂ©rĂȘt sur phase solide et fonctionnalisĂ©s Ă  la 4iĂšme et 5iĂšme position. L’utilisation de ces analogues Nai 4,5-disubstituĂ©s en chimie mĂ©dicinale et peptidique offre un potentiel considĂ©rable dans l’exploration de la relation structure-activitĂ© de peptides d’intĂ©rĂȘt biologique pour identifier et mimer les conformĂšres bioactifs

    Design, synthesis, pericyclic chemistry and biomedical applications of azopeptides

    Full text link
    Les azapeptides sont des peptidomimĂ©tiques dans lesquels le carbone alpha d'un ou plusieurs acides aminĂ©s a Ă©tĂ© remplacĂ© par un atome d'azote. L'objectif principal de cette Ă©tude doctorale a Ă©tĂ© de dĂ©velopper une nouvelle mĂ©thodologie de synthĂšse d'azapeptides, par l’utilisation d'azopeptides, qui sont des analogues azodicarbonylĂ©s possĂ©dant une fonction imino-urĂ©e. L'oxydation des rĂ©sidus d'aza-glycine s'est avĂ©rĂ©e efficace pour l’obtention d’azopeptides, qui ont ensuite Ă©tĂ© utilisĂ©s pour effectuer des rĂ©action pĂ©ricycliques et examinĂ©s par cristallographie aux rayons X. Les rĂ©actions de Diels-Alder et d'Alder-ene sur les azopeptides ont respectivement permis d'accĂ©der aux rĂ©sidus azapipĂ©colyle et aza-allylglycinyle contraints. L'analyse aux rayons X d'un azopeptide Ă  l'Ă©tat solide a fourni un aperçu de la configuration de l'imino-urĂ©e (Chapitre 2). En employant les produits, issues de la chimie des azopeptides, comme analogues contraints de la valine, des mimes de la sĂ©quence Ala-Val-Pro-Ile de la seconde protĂ©ine activatrice de caspases des mitochondries (Smac) ont Ă©tĂ© synthĂ©tisĂ©s et leur capacitĂ© Ă  induire l'apoptose dans les cellules mammaires cancĂ©reuses a Ă©tĂ© dĂ©montrĂ© (Chapitre 3). Dans le but de poursuivre le dĂ©veloppement des mĂ©thodes pour synthĂ©tiser des azopeptides une approche en phase solide a Ă©tĂ© conçue sur rĂ©sine Rink Amide et pourrais ĂȘtre utiliser pour gĂ©nĂ©rer des chimiothĂšques de composĂ©s en utilisant la chimie combinatoire. Cette Ă©tude a Ă©tĂ© ciblĂ©e sur la synthĂšse d'analogues azapeptides des opioĂŻdes morphiceptine et endomorphine ainsi que le peptide de libĂ©ration de l'hormone de croissance (GHRP-6, HHis- D-Trp-Ala-Trp-D-Phe-Lys-NH2) se liant aux rĂ©cepteur du cluster de diffĂ©renciation 36 (CD36). Les premiers peptides ont Ă©tĂ© examinĂ©s en raison de leur importance en tant qu'agonistes sĂ©lectifs des sous-types de rĂ©cepteurs opioĂŻdes ayant le potentiel de dĂ©velopper de nouveaux analgĂ©siques. Le dernier exemple d’analogue avait pour but de poursuivre le dĂ©veloppement de modulateurs sĂ©lectifs de CD36 ayant un potentiel thĂ©rapeutique pour le traitement de maladies comprenant une inflammation entraĂźnĂ©e par les macrophages, y compris la dĂ©gĂ©nĂ©rescence maculaire liĂ©e Ă  l'Ăąge et l'athĂ©rosclĂ©rose. Douze aza-opioĂŻdes ont Ă©tĂ© synthĂ©tisĂ©s en remplaçant la proline Ă  la position deux des ligands peptidiques respectifs par diffĂ©rents rĂ©sidus d'aza-pipĂ©colate. De mĂȘme, cinq analogues d'aza-pipĂ©colyle GHRP6 ii ont Ă©tĂ© synthĂ©tisĂ©s en utilisant la mĂ©thode en phase solide pour remplacer respectivement les rĂ©sidus Ala3 et Trp4 (chapitre 4). Les aza-opioĂŻdes ont Ă©tĂ© examinĂ© comme inhibiteur des contractions induites Ă©lectriquement sur l'ilĂ©on de cobaye et du canal dĂ©fĂ©rent de souris, et les analogues aza-GHRP-6 pour leurs capacitĂ©s Ă  diminuer la surproduction d'oxyde nitrique induite par CD36 aprĂšs traitement avec l’agoniste lipopeptide fibroblastes des rĂ©cepteurs, tous deux ont dĂ©montrĂ© l'utilitĂ© de la mĂ©thodologie de l'aza-pipĂ©colate pour Ă©tudier l'influence de la conformation sur l'activitĂ© et la sĂ©lectivitĂ© des peptides. Les nouvelles mĂ©thodologies de synthĂšse des azopeptides en solution et sur support solide dĂ©crites dans cette thĂšse sont conçues pour permettre leur utilisation dans des Ă©tudes de relations structure-activitĂ© avec diffĂ©rents peptides biologiquement actifs. A cet Ă©gard, des azopeptides ont Ă©tĂ© utilisĂ©s dans ces recherches pour fabriquer des ligands des facteurs inhibiteurs du mĂ©lanocyte-1 (MIF-1), Smac, opioĂŻde et du rĂ©cepteur CD36. ConsidĂ©rant l'efficacitĂ© des mĂ©thodes de synthĂšse et les applications potentielles des azopeptides, les rĂ©sultats de cette thĂšse offrent un fort potentiel pour l'avancement de la science des peptides dans le contexte de la chimie mĂ©dicinale et de la biologie chimique.The azapeptides are peptide mimics in which the alpha carbon of one or more amino acids has been replaced with a nitrogen atom. The primary goal of this doctorate study was to develop a new method for the synthesis of azapeptides by the application of azopeptides, which are azodicarbonyl analogs that possess an imino urea component. Oxidation of aza-glycine residues proved effective for making azopeptides, which were employed in pericyclic chemistry and examined by X-ray crystallography. Diels−Alder cyclization and Alder−ene reactions on azopeptides enabled respectively access to constrained aza-pipecolyl and azaallylglycinyl residues. X-ray analysis of an azopeptide in the solid state provided insight into imino urea configuration (Chapter 2). Employing the products from azopeptide chemistry as constrained valine analogs, mimics of the Ala-Val-Pro-Ile sequence from the second mitochondria derived activator of caspases (Smac) protein were synthesized and demonstrated ability to induce apoptosis in breast cancer cells (Chapter 3). Following the development of a method to synthesize azopeptides in solution, a solidphase approach was conceived to prepare azopeptides on Rink amide resin and may be amenable to combinatorial chemistry for library generation. This study was targeted on the synthesis of aza-analogs of the opioid peptides morphiceptin and endomorphins as well as the Cluster of Differentiation 36 receptor (CD36) ligand Growth Hormone Releasing Peptide-6 (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2). The former were examined due to their importance as opioid receptor subtype selective agonists with potential for developing novel analgesics. The latter was targeted in pursuit of selective CD36 modulators with therapeutic potential for treating diseases featuring macrophage-driven inflammation including age-related macular degeneration and atherosclerosis. Twelve aza-opioids were synthesized by replacing proline at the two position of the respective peptide ligands with different aza-pipecolate residues. Similarly, five aza-pipecolyl GHRP-6 analogs were synthesized using the solid-phase method to replace respectively the Ala3 and Trp4 residues (Chapter 4). Examination of the aza-opioids for inhibitory potency on electrically induced contractions of the guinea pig ileum and mouse vas deferens, and the aza-GHRP-6 analogs for capacity to diminish CD36-mediated overproduction of nitric oxide in macrophage cells iv after treatment with the Toll-like receptor-2-agonist fibroblast-stimulating lipopeptide, both demonstrated the utility of the aza-pipecolate methodology for studying the influence of conformation on peptide activity and selectivity. The novel methods for the synthesis of azopeptides in solution and on solid support described in this thesis are designed to enable their use in studies of structure-activity relationships with different biologically active peptides. In this respect, azopeptides have been applied in this research to make ligands of the melanocyte-inhibiting factor-1 (MIF-1), Smac, opioid and CD36 receptors. Considering the effectiveness of the synthetic methods and the potential applications of azopeptides, the findings of this thesis offer strong potential for the advancement of peptide science in the context of medicinal chemistry and chemical biology

    SynthĂšse des analogues de l’[azaPhe4]-GHRP-6 comme potentiels modulateurs du rĂ©cepteur CD36

    Full text link
    L’article du chapitre 3, dĂ©crivant la synthĂšse et l’évaluation biologique de 25 analogues azapeptides de GHRP-6, a Ă©tĂ© rĂ©digĂ© par moi-mĂȘme sous la supervision du Professeur William D. Lubell et la discussion de l’aspect biologique a Ă©tĂ© rĂ©digĂ©e respectivement par le Dr. Mukandila Mulumba et le Dr. Samy Omri sous la supervision respective du Professeur Huy Ong et du Professeur Sylvain Chemtob. J’ai effectuĂ© la synthĂšse et la purification de 15 des 25 composĂ©s Ă©tudiĂ©s. Dr. YĂ©sica Garcia-Ramos, une ancienne stagiaire postdoctorale du Professeur William D. Lubell, avait synthĂ©tisĂ© dix de ces aza-GHRP-6. J’ai reproduit six de ces analogues pour complĂ©ter les Ă©tudes biologiques. Nos collaborateurs Dr. Mukandila Mulumba, le Dr. Samy Omri et le Dr. Houda Tahiri ont effectuĂ© les tests d’affinitĂ©s, l’évaluation des propriĂ©tĂ©s anti-inflammatoires et d’activitĂ© angiogĂ©nique des analogues synthĂ©tisĂ©s.Les azapeptides sont des mimes peptidiques oĂč l’un ou plusieurs des carbones de la chaĂźne principale ont Ă©tĂ© remplacĂ©s par des atomes d’azote. Ce remplacement augmente la rigiditĂ© de la structure peptidique et favorise le repliement de type ÎČ. Le repliement de type ÎČ des azapeptides est associĂ© Ă  plusieurs propriĂ©tĂ©s thĂ©rapeutiques. Comparativement aux peptides parents, les azapeptides pourraient non seulement avoir une activitĂ© et une sĂ©lectivitĂ© accrues mais aussi une plus grande stabilitĂ© qui prolonge sa durĂ©e d'action et le rend plus rĂ©sistant aux dĂ©gradations mĂ©taboliques. Pour ce faire, nous nous sommes intĂ©ressĂ©s particuliĂšrement au peptide sĂ©crĂ©teur d’hormone de croissance 6 (GHRP-6, H-His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) qui est un hexapeptide synthĂ©tique possĂ©dant une affinitĂ© pour deux rĂ©cepteurs distincts: les rĂ©cepteurs de growth hormone secretagogue receptor 1a (GHS-R1a) et le rĂ©cepteur cluster of differenciation 36 (CD36). Une sĂ©lectivitĂ© envers le rĂ©cepteur CD36 offre les possibilitĂ©s de soigner des maladies d’ordre angiogĂ©nique, telles que la dĂ©gĂ©nĂ©rescence maculaire liĂ©e Ă  l’ñge (DMLA). De plus, le rĂ©cepteur CD36 peut interagir avec un corĂ©cepteur toll-like receptor 2 (TLR2) pour induire des rĂ©ponses immunitaires innĂ©es. En sachant que la prĂ©sence d’un acide « aza » aminĂ© avec un groupement aromatique sur sa chaĂźne latĂ©rale est primordiale pour augmente sa la sĂ©lectivitĂ© envers le rĂ©cepteur CD36, les travaux effectuĂ©s au cours de ma maĂźtrise qui seront dĂ©taillĂ©s dans cet ouvrage visent Ă  dĂ©velopper une librairie d’analogues de [aza, Phe4]-GHRP-6, en vue Ă©tudier leur affinitĂ© pour le rĂ©cepteur CD36, leur potentiel Ă  moduler la quantitĂ© de monoxyde d’azote (nitric oxide (NO)) produite par les agonistes du TLR2 et enfin leurs propriĂ©tĂ©s angiogĂ©niques. En rĂ©ponse Ă  nos objectifs, une librairie de vingt-cinq azapeptides GHRP-6 a Ă©tĂ© synthĂ©tisĂ©e. Vingt-trois de ces analogues ont Ă©tĂ© synthĂ©tisĂ©s sur support solide et les deux autres en utilisant une approche qui combine la chimie en solution et sur support solide. Tous les analogues synthĂ©tisĂ©s ont Ă©tĂ© testĂ©s pour leur habiletĂ© Ă  moduler la quantitĂ© de monoxyde d’azote (NO) produite par les agonistes du TLR2 dans les macrophages. Ensuite, quatorze de ces analogues ont Ă©tĂ© Ă©valuĂ©s pour leur affinitĂ© avec le rĂ©cepteur CD36 et pour leurs propriĂ©tĂ©s angiogĂ©niques. Cette approche a permis d’effectuer une Ă©tude de la relation structure-activitĂ© des azapeptides modulateurs du rĂ©cepteur CD36, et aussi Ă  identifier de nouveaux candidats pour le sondage biochimique et du potentiel thĂ©rapeutique de ce rĂ©cepteur.Azapeptides are peptide mimics in which one or more carbon atoms in the α-position have been replaced by a nitrogen atom. This replacement increases the rigidity of the peptide structure and promotes ÎČ-turn conformation, which is associated with many biological activities. Compared to the parent peptide, azapeptides may have increased activity and selectivity as well as greater stability, prolonged duration of action and resistance to metabolic degradation. Growth hormone releasing peptide 6 (GHRP-6, H-His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) is a synthetic hexapeptide possessing affinity for two different receptors: growth hormone secretagogue receptor 1a (GHS-R1a) and cluster of differentiation receptor 36 (CD36). Selective affinity to CD36 may have therapeutic potential for the treatment of disease by modulating angiogenesis. In addition, CD36 is co-expressed with the toll-like receptor 2 (TLR2) and implicated in innate immunity. Bearing in mind that the presence of an "aza" amino acid having an aromatic group on his side chain is essential to increase the selectivity towards the CD36 receptor, the work carried out during my master degree has aimed to synthesize a library of [azaPhe4]-GHRP-6 analogues to study their affinity for CD36, their potential to modulate TLR2 agonist-induced nitric oxide production and finally their angiogenesis properties. A library of 25 azapeptides was made. Twenty-three analogues were synthesized using a solid-phase approach and two analogs were made using a combination of solution and solid phase chemistry. All twenty-five analogues were tested for their ability to modulate the amount of nitric oxide produced in macrophages after treatment with a TLR2 agonist. Subsequently, fourteen of v analogs were evaluated for their CD36 binding affinity and for theirs angiogenesis properties. This approach has provided fundamental knowledge of the structure activity relationships of azapeptide modulators of CD36 as well as novel candidates for probing the chemical biology and medicinal potential of this receptor

    Design et synthĂšse d’hĂ©tĂ©rocycles fusionnĂ©s polysubstituĂ©s par rĂ©action multicomposante de Ugi en tandem pour le dĂ©veloppement d’agents antimicrobiens et antinĂ©oplasiques

    Get PDF
    Les benzodiazĂ©pines et quinoxalines sont des structures trĂšs importantes en chimie mĂ©dicinale et on les retrouve dans un grand nombre de mĂ©dicaments commercialisĂ©s et cliniquement importants. En plus de dĂ©montrer une grande diversitĂ© d’activitĂ©s biologiques et de bonnes propriĂ©tĂ©s pharmacocinĂ©tiques, ces hĂ©tĂ©rocycles benzo-fusionnĂ©s sont capables de mimer plusieurs types de motifs peptidiques et de structures secondaires de protĂ©ines. Ces caractĂ©ristiques en font des prototypes molĂ©culaires d’un grand intĂ©rĂȘt dans l’industrie pharmaceutique pour le dĂ©veloppement de nouveaux agents thĂ©rapeutiques. La premiĂšre partie du mĂ©moire dĂ©crit le dĂ©veloppement d’une voie de synthĂšse pour des 3,4-dihydroquinoxalin2-ones polysubstituĂ©es en utilisant la stratĂ©gie Ugi-dĂ©protection-cyclisation (UDC). Cette mĂ©thode rapide et efficace implique une rĂ©action multicomposante de Ugi suivi d’une dĂ©protection simultanĂ©ment Ă  une cyclisation par substitution nuclĂ©ophile aromatique. L’étude de la rĂ©action multicomposante a dĂ©montrĂ© que la formation prĂ©liminaire de l’imine Ă©tait nĂ©cessaire pour Ă©viter la prĂ©sence d’un produit secondaire important, le produit de la rĂ©action multicomposante de Passerini. Une fois cette premiĂšre Ă©tape optimisĂ©e, la dĂ©protection et lacyclisation ont Ă©galement Ă©tĂ© analysĂ©es pour identifier les meilleures conditions rĂ©actionnelles. Finalement, les conditions optimales identifiĂ©es ont Ă©tĂ© utilisĂ©es pour la production d’une chimiothĂšque de 3,4-dihydroquinoxalin2-ones qui sera employĂ©e dans de futurs tests biologiques. La deuxiĂšme partie du mĂ©moire dĂ©crit le transfert sur support solide de la synthĂšse de 1,4-benzodiazĂ©pin-3-ones par la stratĂ©gie UDC en solution. DiffĂ©rentes rĂ©sines ont Ă©tĂ© testĂ©es et il a Ă©tĂ© observĂ© que la rĂ©action de Ugi et la dĂ©proctection fonctionnaient trĂšs bien sur la plupart d’entre elles. Par contre, l’étape de cyclisation Ă©tait beaucoup plus difficile. Suite Ă  l’évaluation de plusieurs conditions en solution, l’utilisation des meilleures conditions sur support solide a permis l’obtention d’une 1,4-benzodiazĂ©pin-3-one. Il reste encore de l’optimisation Ă  faire, mais ces travaux jettent les fondations pour la synthĂšse de benzodiazĂ©pines sur support solide en utilisant la stratĂ©gie UDC.Benzodiazepines and quinoxalines are very important structures in medicinal chemistry and they can be foundin a great number of marketed and clinically important drugs. In addition to their wide spectrum of biological activities and good pharmacokinetic properties, these benzo-fused heterocycles are able to mimic several types of peptide motifs and protein secondary structures. These characteristics make them very attracting scaffolds in the pharmaceutical industry for the development of new therapeutic agents.The first part of the thesis describes the development of a synthetic route for polysubstituted 3,4-dihydroquinoxalin-2-ones using the Ugi-deprotection-cyclization (UDC) strategy. This convenient and efficient method involves a Ugi multicomponent reaction followed by simultaneous deprotection and cyclization byaromatic nucleophilic substitution. A first study of the multicomponent reaction showed that preformation of the imine was necessary to avoid the presence of an important side product resulting from the Passerini multicomponent reaction. Once this first step optimized, the deprotection and cyclization were also analyzed to identify the best reaction conditions. Finally, the optimal conditions identified for the different steps were used for the production of a chemical library of 3,4-dihydroquinoxalin-2-ones which will be involved in future biological tests. The second part of the thesis describes the transfer on solid support of the 1,4-benzodiazepin-3-one synthesis by UDC. Different resins were tested and the results showed that the Ugi reaction and deproctection worked very well on most of them. However, the cyclization step was much more difficult. Following the evaluation of several conditions in solution for the cyclization, the use of the best conditions on solid support allowed the preparation of a 1,4-benzodiazepin-3-one derivative. There is still optimization to do for the cyclization step butthis work pave the way for the synthesis of benzodiazepines on solid support by UDC and the preparation of polysubstituted 1,4-benzodiazepin-3-one libraries

    Synthesis of Aza- and α,α-disubstituted Glycinyl peptides and application of their electronic and steric interactions for controlling peptide folding, and for biomedical applications

    Full text link
    This thesis describes my research on the application of electronic and steric interactions to control peptide folding for biomedical applications. This thesis has been written employing submitted manuscripts. I specify herein the different contributions of the authors of each of the manuscripts in the respective chapters. The introduction (Chapter 1), and unless specified otherwise below, the following chapters, all were written by me and edited by Professor William D. Lubell. The manuscript in chapter 2 entitled “Paired Utility of Aza-Amino Acyl Proline and Indolizidinone Amino Acid Residues for Peptide Mimicry: Conception of Prostaglandin F2α Receptor Allosteric Modulators that Delay Preterm Birth” describes the synthesis, isolation, characterization and structure-activity relationship study of peptide mimics containing aza-amino acyl proline and indolizidinone amino acid residues to develop allosteric modulators of the prostaglandin F2α receptor. This paper is being accepted by the Journal of Medicinal Chemistry. The results on the synthesis and study of the analogs described in this article were obtained in collaboration with N. D. Prasad Atmuri, another Ph.D. candidate in Professor Lubell’s laboratory. I performed the synthesis, isolation and characterization of all aza-amino acyl proline analogs. All the indolizidinone peptide analogs were synthesized and characterized by N. D. Prasad Atmuri. Under my direction, Jennifer Rudon Fores, a visiting M.Sc. student from Pierre et Marie Curie University (UPMC) performed the synthesis of certain aza-Lys analogs. All analogs were tested for their activity in reducing PGF2α-induced uterine contractions and delaying labor by our collaborators Dr. Xin Hou and Professor Chemtob from the Département de pédiatrie, UniversitĂ© de MontrĂ©al. The sections concerning the indolizidinones and azapeptides were respectively written by N. D. Prasad Atmuri and me, and both were edited by Professor Lubell. The manuscript in chapter 3 entitled “Crystal-State Conformational Analysis of Adm Peptides. Influence of the C-Terminal Substituent” describes my original syntheses, isolation and characterization of set of N-formyl-Adm di- and tripeptides possessing various C-terminal components by conception of an Ugi multiple-component reaction sequence. This manuscript has been submitted to the journal Peptide Science for publication in a special issue devoted to the 8th Peptide Engineering Meeting (PEM 8) held in Berlin, Germany (November 8-10, 2018). The conception and design of the study was defined by Professor Lubell and Professor Toniolo (Department of Chemistry, University of Padova, Italy). I performed all the experimental, characterization and crystallization steps. Dr. Crisma (Institute of Biomolecular Chemistry, University of Padova, Italy) crystallized OHC-Adm-Aib-OMe and performed its X-ray crystallographic analysis, all other crystal structures were solved at the UniversitĂ© de MontrĂ©al regional center. I wrote the first draft of the manuscript and contributed to its revision which was edited by Dr. Crisma and Professors Lubell and Toniolo. The manuscript in Chapter 4 entitled “Isolated α-Turn and Incipient Îł-Helix” presents the unique abilities of homo-oligo-adamantyl peptides to adopt α- and Îł-turn conformations in the solid state and solution. Assembled by an Ugi multicomponent reaction strategy, N-formyl-adamantyl tripeptide tert-butyl and iso-propyl amides were respectively found to adopt an incipient Îł-helix and an isolated α-turn conformation by X-ray diffraction crystallography. The manuscript is under revision for the Chem. Sci. The conception and design of the study was defined by Professor Lubell and Professor Toniolo (Department of Chemistry, University of Padova, Italy). I performed all the experimental, characterization, crystallization and NMR studies. Dr. Crisma performed the FT-IR studies of both tripeptides at different concentrations in solution. I wrote the original draft of the manuscript which was edited by Dr. Crisma and Professors Lubell and Toniolo. In Chapter 5, I have written the conclusion and perspectives of this thesis, which were edited by Professor Lubell.Les peptides prĂ©sentent un grand potentiel thĂ©rapeutique, que ce soit en tant qu’ingrĂ©dient actif ou d’excipient pour la dĂ©livrance de mĂ©dicament. Toutefois, certains dĂ©savantages comme leur faible biodisponibilitĂ©, une stabilitĂ© mĂ©tabolique limitĂ©e et un manque de sĂ©lectivitĂ© limitent leur utilisation. Le dĂ©veloppement de mimes peptidiques possĂ©dant de meilleures propriĂ©tĂ©s pharmacologiques est donc nĂ©cessaire. La prĂ©sente thĂšse doctorale est orientĂ©e vers deux objectifs: a) le dĂ©veloppement d’analogues azapeptides agissant comme modulateurs du rĂ©cepteur prostaglandine F2α (FP) et b) le dĂ©veloppement de mĂ©thodes de synthĂšse et d’analyse conformationnelle de rĂ©sidus glycine Cα,α-di substituĂ© stĂ©riquement encombrĂ©s. Les azapeptides sont une classe de mimes peptidiques oĂč le carbone α d’au moins un acide aminĂ© est remplacĂ© par un atome d’azote. Cette modification qui emploie un semicarbazide en tant que mime d’acide aminĂ© rĂ©duit la flexibilitĂ© conformationnelle et peut induire des repliements ÎČ. Les accouchements prĂ©maturĂ©s reprĂ©sentent un dĂ©fi du point de vue mĂ©dical. MalgrĂ© les efforts dĂ©ployĂ©s pour retarder les accouchements prĂ©maturĂ©s, le taux de naissances prĂ©maturĂ©es ne cesse d’augmenter dans les pays industrialisĂ©s. Le rĂ©cepteur prostaglandine F2α (FP) a Ă©tĂ© utilisĂ© comme cible pour le dĂ©veloppement d’agents tocolytiques (qui retardent l’accouchement). Les analogues aza-amino acyl proline ont dĂ©montrĂ© la capacitĂ© de moduler effectivement le rĂ©cepteur FP et Ă  inhiber les contractions utĂ©rines reliĂ©es au prostaglandines F2α par un mĂ©canisme allostĂ©rique de signalĂ©tique biaisĂ©e d’un rĂ©cepteur couplĂ© Ă  une protĂ©ine G. De plus, l’activitĂ© de ces analogues dĂ©pend de la nature de la chaine latĂ©rale de l’aza-acide aminĂ©. Pour acquĂ©rir une meilleure comprĂ©hension de la relation structure-activitĂ© des azapeptides modulant le rĂ©cepteur FP, une approche orientĂ©e sur la diversitĂ© a Ă©tĂ© dĂ©veloppĂ©e pour introduire diffĂ©rentes chaines latĂ©rales sur le rĂ©sidu aza-amino acyl proline par alkylation de rĂ©sidus aza-Gly-Pro, ainsi que par catalyse au cuivre sur des rĂ©sidus aza-propargylglycine. DiffĂ©rents analogues furent prĂ©parĂ©s pour Ă©tudier l’influence de la taille de la chaine latĂ©rale, de l’hydrophobicitĂ© et de l’aromaticitĂ© sur l’activitĂ©. De plus, une librairie fut prĂ©parĂ©e par modification d’un rĂ©sidu peptidique 4-hydroxyproline ancrĂ© sur support solide. Ces analogues furent utilisĂ©s pour Ă©tudier l’influence du pliement des cycles, de l’hydrophobicitĂ© et des substituants sur l’activitĂ©. Les diffĂ©rents analogues ont Ă©tĂ© testĂ©s en fonction de leur capacitĂ© Ă  moduler les contractions utĂ©rines liĂ©es au PGF2α. Les nouveaux analogues ont montrĂ© que l’activitĂ© envers les contractions myomĂ©triales Ă©tait sensible aux changements de conformation dans la rĂ©gion du tour ÎČ, ainsi qu’à la nature, la taille et la lipophilicitĂ© de la chaine latĂ©rale du rĂ©sidu aza-acide aminĂ©. La synthĂšse de peptides contenant des rĂ©sidus acide-2-amino-2-adamantane (Adm) a Ă©tĂ© explorĂ©e pour examiner l’influence de rĂ©sidus stĂ©riquement encombrĂ©s sur la conformation. Une sĂ©rie de N-formyl-Adm di- et tripeptides possĂ©dant une variĂ©tĂ© de composantes C- terminales a Ă©tĂ© synthĂ©tisĂ©e par une rĂ©action multi-composante de Ugi en utilisant l’adamantan-2-one en tant que prĂ©curseur. La conformation de la chaine principale des peptides stĂ©riquement encombrĂ©s a Ă©tĂ© dĂ©terminĂ©e en utilisant l’analyse par diffraction des rayons X. Le fort encombrement causĂ© par le rĂ©sidu Adm restreint l’espace conformationnel aux rĂ©gions typiques de repliements. La conformation de la chaine peptidique est influencĂ©e par la nature du groupe C-terminal. Les groupes C-terminaux encombrĂ©s, comme les groupes tert-butyl a favorisent les repliements Îł standards alors que les groupes moins encombrĂ©s favorisent les repliements ÎČ- et α. Des tripeptides homo-oligo-Adm possĂ©dant un groupe C-terminal iso-propyl et tert-butyl amide ont Ă©tĂ© prĂ©parĂ©s en utilisant des rĂ©actions de Ugi sĂ©quentielles. L’analyse des trimĂšres cristallisĂ©s par diffraction des rayons X a dĂ©montrĂ© que les analogues comportant le groupement iso-propyl adoptait un repliement α avec un seul pont hydrogĂšne formant un cycle de 13 membres. Les analogues comportant le groupement tert-butyl, quant Ă  eux, formaient deux tours Îł consĂ©cutifs caractĂ©ristique d’une hĂ©lice Îł en formation. Des mĂ©thodes efficaces de synthĂšse d’azapeptides et d’oligomĂšres encombrĂ©s de glycine Cα,α -di substituĂ© ont Ă©tĂ© dĂ©veloppĂ©es. En utilisant ces outils, les effets de contraintes stĂ©riques et Ă©lectroniques de peptides ont respectivement Ă©tĂ© explorĂ©s par l’étude de modulateurs de FP bioactifs dans le but de retarder les accouchements prĂ©maturĂ©s et par l’analyse conformationnelle d’oligomĂšres d’Adm. Le prĂ©sent ouvrage a contribuĂ© Ă  acquĂ©rir une meilleure comprĂ©hension de la relation structure-activitĂ© d’azapeptides modulateurs du rĂ©cepteur FP. De plus, les facteurs contrĂŽlant la conformation des rĂ©sidus Adm stĂ©riquement encombrĂ©s ont Ă©tĂ© Ă©lucidĂ©s par la construction de trois diffĂ©rents Ă©lĂ©ments de structure secondaire (repliements α, ÎČ et Îł dĂ©pendant de la nature du groupement C-terminal. Ceci offre un grand potentiel pour des applications en chimie des peptides et dans le domaine biomĂ©dical.Peptides exhibit pharmaceutical potential as active ingredients and excipients in drug delivery systems. Their shortcomings, such as low bioavailability, poor selectivity and limited metabolic stability have however necessitated the design and synthesis of peptidomimetics to improve pharmacological properties. The body of this Ph.D. thesis has been targeted towards two objectives: a) the development of azapeptide analogs as modulators of the prostaglandin F2α receptor (FP), and b) the development of methods for the construction, and the conformational analysis of bulky Cα,α-disubstituted glycine amino acids. Azapeptides are a class of peptidomimetic in which the Cα unit of at least one amino acid residue is replaced by a nitrogen atom. This modification features a semicarbazide as an amino amide surrogate, which reduces conformational flexibility and can induce ÎČ -turn conformation. Preterm birth is an unmet medical need. Despite efforts to counter the onset of preterm labor, the rate of premature birth has increased steadily in developed countries. The prostaglandin F2α receptor (FP) was pursued as target for designing tocolytic (labor delaying) agents. Aza-amino acyl proline analogs had been shown to modulate FP and to inhibit PGF2α-mediated uterine contractions by an allosteric mechanism involving biased G protein-coupled receptor signalling. Moreover, the activity of these analogs was found to be contingent on the nature of their aza-residue side chains. To better understand of the structure-activity relationships of azapeptide modulators of FP, diversity-oriented approaches were devised to introduce different side chains onto the aza-amino acyl proline residue by alkylation of aza-Gly-Pro analogs, as well as by copper-catalyzed reactions on an aza-propargylglycine (aza-Pra) residue. Analogs were prepared to study the influences of side chain size, hydrophobicity and aromaticity on activity. In addition, a set of proline residue analogs were prepared by the modification of a 4-hydroxyproline peptide linked to a solid support. These analogs were synthesized to study the influence of ring pucker, hydrophobicity and substituents on activity. Analogs were tested for ability to modulate PGF2α-mediated uterine contractions. Study of the novel modulators demonstrated that activity on myometrial contractions was sensitive to changes in the conformation at the turn region, as well as the size, nature and lipophilicity of the aza-residue side chain. The chemistry of peptides bearing 2-amino adamantane-2-carboxylic acid (Adm) was explored to examine the influence of the bulky residue on conformation. A set of N-formyl-Adm di- and tripeptides possessing various C-terminal components was synthesized by the development of a multiple-component Ugi reaction sequence using adamantan-2-one as precursor to the bulky residue. The backbone conformation of the hindered peptides was determined using X-ray analysis. The steric bulk of the Adm residue restricted conformational space to a region typical of an intramolecular hydrogen-bonded α- and Îł-turn, as well as a distorted type-II (IIÎČ ) ÎČ -turn. The C-terminal residue influenced the backbone conformation. Bulkier C-terminal groups, such as t-butyl, favored regular Îł-turns. Smaller C-terminal residues favored ÎČ - and α-turn geometry. Employing an iterative Ugi sequence homo-oligo-Adm tripeptides were prepared possessing i-propyl and t-butyl C-terminal amides. Crystallization of the Adm trimers and X-ray analysis in the solid state demonstrated that the i-propyl analog adopted the conformation of a single 13-membered hydrogen-bonded α-turn. On the other hand, the t-butyl analog exhibited two consecutive Îł-turns in an incipient Îł-helix conformation. Effective methods have thus been developed for the assembly of azapeptides and sterically bulky Cα,α-disubstituted glycine oligomers. With such methods in hand, the effects of electronic and steric constraint on peptide conformation have been respectively explored in studies of biologically active FP modulators to develop therapy to delay labor, and in conformational analyses of Adm oligomers. This thesis has thus contributed to a better understanding of structure-activity relationships of azapeptide modulators of FP. Moreover, the factors controlling the conformation of the bulky Adm residue have been elucidated in the construction of three different secondary elements (α-, ÎČ and Îł-turns) contingent on the C-terminal residues. The results offer interesting potential for biomedical and peptide chemistry

    Les azasulfurylpeptides : synthĂšse, analyse conformationnelle et applications biologiques

    Get PDF
    Les azasulfurylpeptides sont des mimes peptidiques auxquels le carbone en position alpha et le carbonyle d’un acide aminĂ© sont respectivement remplacĂ©s par un atome d’azote et un groupement sulfonyle (SO2). Le but premier de ce projet a Ă©tĂ© de dĂ©velopper une nouvelle mĂ©thode de synthĂšse de ces motifs, Ă©galement appelĂ©s N-aminosulfamides. À cette fin, l’utilisation de sulfamidates de 4-nitrophĂ©nol s’est avĂ©rĂ©e importante dans la synthĂšse des azasulfuryltripeptides, permettant le couplage d’hydrazides avec l’aide d’irradiation aux micro-ondes (Chapitre 2). Par la suite, en quantitĂ© stoechiomĂ©trique d’une base et d’un halogĂ©nure d’alkyle, les azasulfurylglycines (AsG) formĂ©s peuvent ĂȘtre chimiosĂ©lectivement alkylĂ©s afin d’y insĂ©rer diverses chaĂźnes latĂ©rales. Les propriĂ©tĂ©s conformationnelles des N-aminosulfamides Ă  l’état solide ont Ă©tĂ© Ă©lucidĂ©es grĂące Ă  des Ă©tudes cristallographiques par rayons X : elles possĂšdent une structure tĂ©traĂ©drique autour de l’atome de soufre, des traits caractĂ©ristiques des azapeptides et des sulfonamides, ainsi que du potentiel Ă  favoriser la formation de tours gamma (Chapitre 3). AprĂšs le dĂ©veloppement d’une mĂ©thode de synthĂšse des N-aminosulfamides en solution, une approche combinatoire sur support solide a Ă©galement Ă©tĂ© Ă©laborĂ©e sur la rĂ©sine amide de Rink afin de faciliter la gĂ©nĂ©ration d’une librairie d’azasulfurylpeptides. Cette Ă©tude a Ă©tĂ© rĂ©alisĂ©e en employant le growth hormone releasing peptide 6 (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2). Ce dernier est un hexapeptide possĂ©dant une affinitĂ© pour deux rĂ©cepteurs, le growth hormone secretagogue receptor 1a (GHS-R1a) et le rĂ©cepteur cluster of differenciation 36 (CD36). Une affinitĂ© sĂ©lective envers le rĂ©cepteur CD36 confĂšre des propriĂ©tĂ©s thĂ©rapeutiques dans le traitement de la dĂ©gĂ©nĂ©rescence maculaire liĂ©e Ă  l’ñge (DMLA). Six analogues d’azasulfurylpeptides de GHRP-6 utilisĂ©s comme ligands du CD36 ont Ă©tĂ© synthĂ©tisĂ©s sur support solide, mettant en Ă©vidence le remplacement du tryptophane Ă  la position 4 de GHRP-6 (Chapitre 4). Les analogues de GHRP-6 ont Ă©tĂ© ensuite analysĂ©s pour leur capacitĂ© Ă  moduler les effets de la fonction et de la cascade de signalisation des ligands spĂ©cifiques au Toll-like receptor 2 (TLR2), en collaboration avec le Professeur Huy Ong du dĂ©partement de Pharmacologie Ă  la FacultĂ© de Pharmacie de l’UniversitĂ© de MontrĂ©al. Le complexe TLR2-TLR6 est reconnu pour ĂȘtre co-exprimĂ© et modulĂ© par CD36. En se liant au CD36, certains ligands de GHRP-6 ont eu un effet sur la signalisation du TLR2. Par exemple, les azasulfurylpeptides [AsF(4-F)4]- et [AsF(4-MeO)4]-GHRP-6 ont dĂ©montrĂ© une capacitĂ© Ă  empĂȘcher la surproduction du monoxyde d’azote (NO), un sous-produit rĂ©actif formĂ© suite Ă  l’induction d’un signal dans les macrophages par des ligands spĂ©cifiques liĂ©s au TLR2, tel le fibroblast-stimulating lipopeptide 1 (R-FSL-1) et l’acide lipotĂ©ichoĂŻque (LTA). En addition, la sĂ©crĂ©tion du tumor necrosis factor alpha (TNFa) et du monocyte chemoattractant protein 1 (MCP-1), ainsi que l’activation du nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), ont Ă©tĂ© rĂ©duites. Ces rĂ©sultats dĂ©montrent le potentiel de ces azasulfurylpeptides Ă  pouvoir rĂ©guler le rĂŽle du TLR2 qui dĂ©clenche des rĂ©ponses inflammatoires et immunitaires innĂ©es (Perspectives). Finalement, le potentiel des azasulfurylpeptides d’inhiber des mĂ©tallo-bĂȘta-lactamases, tels le New-Delhi Metallo-bĂȘta-lactamase 1 (NDM-1), IMP-1 et le Verona Integron-encoded Metallo-bĂȘta-lactamase 2 (VIM-2), a Ă©tĂ© Ă©tudiĂ© en collaboration avec le Professeur James Spencer de l’UniversitĂ© de Bristol (Royaumes-Unis). Certains analogues ont Ă©tĂ© des inhibiteurs micromolaires du IMP-1 (Perspectives). Ces nouvelles voies de synthĂšse des azasulfurylpeptides en solution et sur support solide devraient donc permettre leur utilisation dans des Ă©tudes de relations structure-activitĂ© avec diffĂ©rents peptides biologiquement actifs. En plus d'expandre l'application des azasulfurylpeptides comme inhibiteurs d'enzymes, cette thĂšse a rĂ©vĂ©lĂ© le potentiel de ces N-aminosulfamides Ă  mimer les structures secondaires peptidiques, tels que les tours gamma. À cet Ă©gard, l’application des azasulfurylpeptides a Ă©tĂ© dĂ©montrĂ©e par la synthĂšse de ligands du CD36 prĂ©sentant des effets modulateurs sur le TLR2. Compte tenu de leur synthĂšse efficace et de leur potentiel en tant qu’inhibiteurs, les azasulfurylpeptides devraient trouver une large utilisation dans les sciences de peptides pour des applications dans la mĂ©decine et de la chimie biologique.The azasulfurylpeptides are peptide mimics in which the alpha carbon and the carbonyl of an amino acid residue are respectively replaced by a nitrogen atom and a sulfonyl group (SO2). The primary goal of this doctorate project was to develop a new effective method for the synthesis of these motifs, also called N-aminosulfamides. Towards this aim, the use of 4-nitrophenyl sulfamidates turned out to be important in the synthesis of azasulfuryltripeptides, allowing hydrazide couplings under micro-wave irradiation (Chapter 2). Side-chain diversity was then added using a stoichiometric amount of base and different alkyl halides to alkylate chemoselectively the azasulfurylglycine (AsG) residue. The conformational properties of the N-aminosulfamides in the solid state were studied using X-Ray crystallography, which showed a tetrahedral geometry about the sulfur atom, features of azapeptides and sulfonamides, as well as potential to favor the formation of gamma turns (Chapter 3). Following the development of the synthesis of these N-aminosulfamides in solution, a combinatorial approach on solid support was elaborated on Rink amide resin to generate a library of azasulfurylpeptides. The study was performed using the Growth Hormone Releasing Peptide 6 (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2). The latter is a hexapeptide that has affinity for two receptors, the Growth Hormone Secretagogue Receptor 1a (GHS-R1a) and the Cluster of Differenciation 36 (CD36) receptor. Selective binding to the CD36 receptor has therapeutic potential in the treatment of age-related macular degeneration (AMD). Six azasulfurylpeptide analogs were synthesized on solid support by replacing tryptophan at the 4th position of GHRP-6 with different N-aminosulfamide residues (Chapter 4). The GHRP-6 analogs were tested for their ability to mediate the effects of receptor-specific ligands on the function and downstream signaling of the Toll-Like Receptor 2 (TLR2), in collaboration with Professor Huy Ong at the department of Pharmacology in the Faculty of Pharmacy at the UniversitĂ© de MontrĂ©al. The TLR2-TLR6 complex is known to be co-expressed and modulated by CD36. On binding to CD36, certain GHRP-6 ligands exhibited effects on the signaling of TLR2. For example, the azasulfurylpeptides [4-F-AsF4]- and [4-MeO-AsF4]-GHRP-6 prevented the overproduction of nitric oxide (NO), a reactive oxygen species formed following the induction of signal in macrophages on binding of TLR2-specific ligands, such as the Fibroblast-Stimulating Lipopeptide 1 (R-FSL-1) and lipoteichoic acid (LTA). Furthermore, the secretion of the Tumor Necrosis Factor Alpha (TNFa) and Monocyte Chemoattractant Protein 1 (MCP-1), as well as the activation of the Nuclear Factor Kappa-light-chain-enhancer of activated B cells (NF-kB), all were reduced. These results offer promise for regulating Toll-like receptor roles in triggering innate immunity and inflammatory responses (Perspectives). Finally, the potential of the azasulfurylpeptides to inhibit metallo-bĂȘta-lactamases, such as the New-Delhi Metallo-ÎČ-lactamase 1 (NDM-1), IMP-1 and the Verona Integron-encoded Metallo-bĂȘta-lactamase 2 (VIM-2), has been studied in collaboration with Professor James Spencer at the University of Bristol (United-Kingdom). Some analogs were micromolar inhibitors of IMP-1 (Perspectives). These new approaches for the synthesis of azasulfurylpeptides in solution and on solid support should enable their use in studies of structure-activity relationships with different biologically active peptides. In addition to expanding the application of azasulfurylpeptides as enzyme inhibitors, this thesis has revealed the potential of these N-aminosulfamides to mimic the peptide secondary structures, such as gamma turns. Application of azasulfurylpeptides in this respect has been demonstrated by the synthesis of CD36 ligands exhibiting modulatory effects on the TLR2. Considering their effective synthesis and potential as inhibitors, azasulfurylpeptides should find broad use in peptide science for applications in medicine and chemical biology

    MĂ©thodologie pour la synthĂšse combinatoire d’azapeptides: application Ă  la synthĂšse d’analogues aza-GHRP-6 en tant que ligands du rĂ©cepteur CD36

    Full text link
    Les azapeptides sont des mimes peptidiques oĂč le carbone alpha d’un ou de plusieurs acides aminĂ©s est remplacĂ© par un atome d’azote. Cette modification tend Ă  stabiliser une conformation en repliement beta en raison de la rĂ©pulsion Ă©lectronique entre les paires d’électrons libres des atomes d’azote adjacents et de la gĂ©omĂ©trie plane de l’urĂ©e. De plus, le rĂ©sidu semicarbazide a une meilleure rĂ©sistance face aux protĂ©ases en plus d’ĂȘtre chimiquement plus stable qu’une liaison amide. Bien que les propriĂ©tĂ©s des azapeptides en fassent des mimes peptidiques intĂ©ressants, leurs mĂ©thodes de synthĂšses font appel Ă  la synthĂšse laborieuse d’hydrazines substituĂ©es en solution. Le peptide sĂ©crĂ©teur d’hormone de croissance 6 (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) est un hexapeptide synthĂ©tique qui possĂšde une affinitĂ© pour deux rĂ©cepteurs distincts: les rĂ©cepteurs GHS-R1a et CD36. Les travaux effectuĂ©s au cours de mon doctorat qui seront dĂ©taillĂ©s dans cet ouvrage visent Ă  atteindre deux objectifs: (1) le dĂ©veloppement d’analogues du peptide GHRP-6 sĂ©lectif Ă  un seul rĂ©cepteur et (2) la mise au point d’une nouvelle mĂ©thodologie pour la synthĂšse combinatoire d’azapeptides. En rĂ©ponse au premier objectif, la synthĂšse parallĂšle de 49 analogues aza-GHRP-6 a Ă©tĂ© effectuĂ©e et certains candidats sĂ©lectifs au rĂ©cepteur CD36 ont Ă©tĂ© identifiĂ©s. L’étude de leurs propriĂ©tĂ©s anti-angiogĂ©niques, effectuĂ©e par nos collaborateurs, a Ă©galement permis d’identifier des candidats intĂ©ressants pour le traitement potentiel de la dĂ©gĂ©nĂ©rescence maculaire liĂ©e Ă  l’ñge. Une nouvelle approche pour la synthĂšse combinatoire d’azapeptides, faisant appel Ă  l’alkylation et la dĂ©protection chimiosĂ©lective d’une sous-unitĂ© semicarbazone ancrĂ©e sur support solide, a ensuite Ă©tĂ© dĂ©veloppĂ©e. La portĂ©e de cette mĂ©thodologie a Ă©tĂ© augmentĂ©e par la dĂ©couverte de conditions permettant l’arylation rĂ©giosĂ©lective de cette sous-unitĂ© semicarbazone, donnant accĂšs Ă  treize nouveaux dĂ©rivĂ©s aza-GHRP-6 possĂ©dant des rĂ©sidus aza-arylglycines aux positions D-Trp2 et Trp4. L’élaboration de conditions propices Ă  l’alkylation et la dĂ©protection chimiosĂ©lective de la semicarbazone a donnĂ© accĂšs Ă  une variĂ©tĂ© de chaĂźnes latĂ©rales sur l’acide aminĂ© « aza » prĂ©alablement inaccessibles. Nous avons, entre autres, dĂ©montrĂ© qu’une chaĂźne latĂ©rale propargyl pouvait ĂȘtre incorporĂ©e sur l’acide aminĂ© « aza ». Tenant compte de la rĂ©activitĂ© des alcynes, nous avons ensuite Ă©laborĂ© des conditions rĂ©actionnelles permettant la formation in situ d’azotures aromatiques, suivie d’une rĂ©action de cycloaddition 1,3-dipolaire sur support solide, dans le but d’obtenir des mimes de tryptophane. Sept analogues du GHRP-6 ont Ă©tĂ© synthĂ©tisĂ©s et testĂ©s pour affinitĂ© au rĂ©cepteur CD36 par nos collaborateurs. De plus, nous avons effectuĂ© une rĂ©action de couplage en solution entre un dipeptide possĂ©dant un rĂ©sidu aza-propargylglycine, du paraformaldehyde et une variĂ©tĂ© d’amines secondaires (couplage A3) afin d’accĂ©der Ă  des mimes rigides d’aza-lysine. Ces sous-unitĂ©s ont ensuite Ă©tĂ© incorporĂ©es sur support solide afin de gĂ©nĂ©rer sept nouveaux azapeptides avec des dĂ©rivĂ©s aza-lysine Ă  la position Trp4 du GHRP-6. Enfin, une rĂ©action de cyclisation 5-exo-dig a Ă©tĂ© dĂ©veloppĂ©e pour la synthĂšse de N-amino imidazolin-2-ones en tant que nouveaux mimes peptidiques. Leur fonctionnalisation par une sĂ©rie de groupements benzyliques Ă  la position 4 de l’hĂ©tĂ©rocycle a Ă©tĂ© rendue possible grĂące Ă  un couplage Sonogashira prĂ©cĂ©dant la rĂ©action de cyclisation. Les propriĂ©tĂ©s conformationnelles de cette nouvelle famille de composĂ©s ont Ă©tĂ© Ă©tudiĂ©es par cristallographie aux rayons X et spectroscopie RMN d’un tĂ©trapeptide modĂšle. L’activitĂ© biologique de deux mimes peptidiques, possĂ©dant un rĂ©sidu N-amino-4-mĂ©thyl- et 4-benzyl-imidazolin-2-one Ă  la position Trp4 du GHRP-6, a aussi Ă©tĂ© examinĂ©e. L’ensemble de ces travaux devrait contribuer Ă  l’avancement des connaissances au niveau des facteurs structurels et conformationnels requis pour le dĂ©veloppement d’azapeptides en tant que ligands du rĂ©cepteur CD36. De plus, les rĂ©sultats obtenus devraient encourager davantage l’utilisation d’azapeptides comme peptidomimĂ©tiques grĂące Ă  leur nouvelle facilitĂ© de synthĂšse et la diversitĂ© grandissante au niveau de la chaĂźne latĂ©rale des acides aminĂ©s « aza ».Azapeptides are peptide mimics in which the CH alpha in one or more amino acids has been replaced with a nitirogen atom. Such a modification tends to induce beta turn conformations in peptides, because of the consequences of lone–pair lone–pair repulsion between the two adjacent nitrogens and the planar geometry of the urea in the semicarbazide moiety. Furthermore, the semicarbazide increases protease resistance and is chemically more stable than its amide counterpart. Despite the potential advantages of using azapeptides mimics, their synthesis has been hampered by the solution-phase construction of substituted hydrazines prior to their incorporation into peptide sequences. Growth Hormone Releasing Peptide 6 sequence (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) is a synthetic hexapeptide that binds to two distinct receptor: the Growth Hormone Secretatgogue Receptor 1a (GHS-R1a) and the Cluster of Differentiation 36 (CD36) receptor. The body of my Ph.D thesis has been generally targeted towards two objectives: (a) the development of azapeptide analogs of GHRP-6 with enhanced receptor selectivity and (b) the elaboration of a new synthetic approach for combinatorial submonomer azapeptide synthesis. In response to the first objective, 49 aza-GHRP-6 derivatives were synthesized and evaluated for receptor binding and biological activity. From this library, certain candidates were identified which exhibited decreased affinity for the GHS-R1a receptor with maintained affinity for the CD36 receptor. Furthermore, in studying their anti-angiogenic properties, our collaborators have identified aza-GHRP-6 analogs, which caused a marked decrease in microvascular sprouting in choroid explants, as well as another displaying potential to increase angiogenesis. A new approach for the combinatorial synthesis of azapeptides was developed to better conduct SAR studies using azapeptides. This method features the chemoselective alkylation and deprotection of a resin-bound semicarbazone building block. The scope of the methodology was further expanded by the development of reaction conditions for the chemoselective N-arylation of this semicarbazone residue, yielding 13 aza-GHRP-6 derivatives with aza-arylglycines residues at the D-Trp2 and Trp4 positions. The elaboration of a methodology based on the chemoselective alkylation and deprotection of a semicarbazone has allowed for greater aza-amino acid side chain diversity, enabling for example, the efficient incorporation of aza-propargylglycine residues into peptide sequences. Considering the reactivity of alkynes, we developed reaction conditions for in situ formation of aromatic azides, followed by a 1,3-dipolar cycloaddition reaction on solid support to yield aza-1-aryl,2,3-triazole-3-alanine residues as tryptophan mimics. Seven aza-GHRP-6 analogs were synthesized and subsequently tested for binding to the CD36 receptor by our collaborators. Moreover, the coupling reaction between an aza-propargylglycine-containing dipeptide building block, paraformaldehyde and a variety of secondary amines (A3 coupling) was accomplished in solution to provide access to rigid aza-lysine mimics. These aza-dipeptides were subsequently incorporated at the Trp4 position of seven new aza-GHRP-6 analogues using a solid-phase protocol, and the resulting azaLys mimics were tested for binding towards the CD36 receptor. Finally, conditions for a 5-exo-dig cyclization of an aza-propargylglycine residue were developed to give N-amino imidazolin-2-ones as turn-inducing peptide mimics. Their modification at the 4 position was achieved using a Sonogashira coupling protocol prior to the cyclization step. The conformational properties of these new heterocyclic motifs were assessed by X-ray crystallography and NMR spectroscopy on a tetrapeptide model system. The incorporation of N-amino-4-methyl- and 4-benzyl-imidazolin-2-ones at the Trp4 position of GHRP-6 was further accomplished and the biological evaluation of the peptidomimetics was examined. Taken together, these results should lead to a better understanding of the structural and conformational factors responsible for binding and biological activity of azapeptide ligands of the CD36 receptor. Furthermore, the submonomer approach for azapeptide synthesis developed should promote the use of azapeptides as peptide mimics, given its accessibility and the increased aza-amino acid side-chain diversity available
    corecore