4 research outputs found

    Do Language Models Understand Anything? On the Ability of LSTMs to Understand Negative Polarity Items

    Get PDF
    In this paper, we attempt to link the inner workings of a neural language model to linguistic theory, focusing on a complex phenomenon well discussed in formal linguis- tics: (negative) polarity items. We briefly discuss the leading hypotheses about the licensing contexts that allow negative polarity items and evaluate to what extent a neural language model has the ability to correctly process a subset of such constructions. We show that the model finds a relation between the licensing context and the negative polarity item and appears to be aware of the scope of this context, which we extract from a parse tree of the sentence. With this research, we hope to pave the way for other studies linking formal linguistics to deep learning.Comment: Accepted to the EMNLP workshop "Analyzing and interpreting neural networks for NLP

    The role of approximate negators in modeling the automatic detection of negation in tweets

    Get PDF
    Although improvements have been made in the performance of sentiment analysis tools, the automatic detection of negated text (which affects negative sentiment prediction) still presents challenges. More research is needed on new forms of negation beyond prototypical negation cues such as “not” or “never.” The present research reports findings on the role of a set of words called “approximate negators,” namely “barely,” “hardly,” “rarely,” “scarcely,” and “seldom,” which, in specific occasions (such as attached to a word from the non-affirmative adverb “any” family), can operationalize negation styles not yet explored. Using a corpus of 6,500 tweets, human annotation allowed for the identification of 17 recurrent usages of these words as negatives (such as “very seldom”) which, along with findings from the literature, helped engineer specific features that guided a machine learning classifier in predicting negated tweets. The machine learning experiments also modeled negation scope (i.e. in which specific words are negated in the text) by employing lexical and dependency graph information. Promising results included F1 values for negation detection ranging from 0.71 to 0.89 and scope detection from 0.79 to 0.88. Future work will be directed to the application of these findings in automatic sentiment classification, further exploration of patterns in data (such as part-of-speech recurrences for these new types of negation), and the investigation of sarcasm, formal language, and exaggeration as themes that emerged from observations during corpus annotation

    Measuring the Severity of Depression from Text using Graph Representation Learning

    Get PDF
    The common practice of psychology in measuring the severity of a patient's depressive symptoms is based on an interactive conversation between a clinician and the patient. In this dissertation, we focus on predicting a score representing the severity of depression from such a text. We first present a generic graph neural network (GNN) to automatically rate severity using patient transcripts. We also test a few sequence-based deep models in the same task. We then propose a novel form for node attributes within a GNN-based model that captures node-specific embedding for every word in the vocabulary. This provides a global representation of each node, coupled with node-level updates according to associations between words in a transcript. Furthermore, we evaluate the performance of our GNN-based model on a Twitter sentiment dataset to classify three different sentiments and on Alzheimer's data to differentiate Alzheimer’s disease from healthy individuals respectively. In addition to applying the GNN model to learn a prediction model from the text, we provide post-hoc explanations of the model's decisions for all three tasks using the model's gradients
    corecore