7,782 research outputs found

    Investigating the validity of current network analysis on static conglomerate networks by protein network stratification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A molecular network perspective forms the foundation of systems biology. A common practice in analyzing protein-protein interaction (PPI) networks is to perform network analysis on a conglomerate network that is an assembly of all available binary interactions in a given organism from diverse data sources. Recent studies on network dynamics suggested that this approach might have ignored the dynamic nature of context-dependent molecular systems.</p> <p>Results</p> <p>In this study, we employed a network stratification strategy to investigate the validity of the current network analysis on conglomerate PPI networks. Using the genome-scale tissue- and condition-specific proteomics data in <it>Arabidopsis thaliana</it>, we present here the first systematic investigation into this question. We stratified a conglomerate <it>A. thaliana </it>PPI network into three levels of context-dependent subnetworks. We then focused on three types of most commonly conducted network analyses, i.e., topological, functional and modular analyses, and compared the results from these network analyses on the conglomerate network and five stratified context-dependent subnetworks corresponding to specific tissues.</p> <p>Conclusions</p> <p>We found that the results based on the conglomerate PPI network are often significantly different from those of context-dependent subnetworks corresponding to specific tissues or conditions. This conclusion depends neither on relatively arbitrary cutoffs (such as those defining network hubs or bottlenecks), nor on specific network clustering algorithms for module extraction, nor on the possible high false positive rates of binary interactions in PPI networks. We also found that our conclusions are likely to be valid in human PPI networks. Furthermore, network stratification may help resolve many controversies in current research of systems biology.</p

    The hardwiring of development: Organization and function of genomic regulatory systems

    Get PDF
    The gene regulatory apparatus that directs development is encoded in the DNA, in the form of organized arrays of transcription factor target sites. Genes are regulated by interactions with multiple transcription factors and the target sites for the transcription factors required for the control of each gene constitute its cis-regulatory system. These systems are remarkably complex. Their hardwired internal organization enables them to behave as genomic information processing systems. Developmental gene regulatory networks consist of the cis-regulatory systems of all the relevant genes and the regulatory linkages amongst them. Though there is yet little explicit information, some general properties of genomic regulatory networks have become apparent. The key to understanding how genomic regulatory networks are organized, and how they work, lies in experimental analysis of cis-regulatory systems at all levels of the regulatory network

    Detection of regulator genes and eQTLs in gene networks

    Full text link
    Genetic differences between individuals associated to quantitative phenotypic traits, including disease states, are usually found in non-coding genomic regions. These genetic variants are often also associated to differences in expression levels of nearby genes (they are "expression quantitative trait loci" or eQTLs for short) and presumably play a gene regulatory role, affecting the status of molecular networks of interacting genes, proteins and metabolites. Computational systems biology approaches to reconstruct causal gene networks from large-scale omics data have therefore become essential to understand the structure of networks controlled by eQTLs together with other regulatory genes, and to generate detailed hypotheses about the molecular mechanisms that lead from genotype to phenotype. Here we review the main analytical methods and softwares to identify eQTLs and their associated genes, to reconstruct co-expression networks and modules, to reconstruct causal Bayesian gene and module networks, and to validate predicted networks in silico.Comment: minor revision with typos corrected; review article; 24 pages, 2 figure

    Extracting the abstraction pyramid from complex networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>At present, the organization of system modules is typically limited to either a multilevel hierarchy that describes the "vertical" relationships between modules at different levels (e.g., module A at level two is included in module B at level one), or a single-level graph that represents the "horizontal" relationships among modules (e.g., genetic interactions between module A and module B). Both types of organizations fail to provide a broader and deeper view of the complex systems that arise from an integration of vertical and horizontal relationships.</p> <p>Results</p> <p>We propose a complex network analysis tool, Pyramabs, which was developed to integrate vertical and horizontal relationships and extract information at various granularities to create a pyramid from a complex system of interacting objects. The pyramid depicts the nested structure implied in a complex system, and shows the vertical relationships between abstract networks at different levels. In addition, at each level the abstract network of modules, which are connected by weighted links, represents the modules' horizontal relationships. We first tested Pyramabs on hierarchical random networks to verify its ability to find the module organization pre-embedded in the networks. We later tested it on a protein-protein interaction (PPI) network and a metabolic network. According to Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), the vertical relationships identified from the PPI and metabolic pathways correctly characterized the <it>inclusion </it>(i.e., <it>part-of</it>) relationship, and the horizontal relationships provided a good indication of the functional closeness between modules. Our experiments with Pyramabs demonstrated its ability to perform knowledge mining in complex systems.</p> <p>Conclusions</p> <p>Networks are a flexible and convenient method of representing interactions in a complex system, and an increasing amount of information in real-world situations is described by complex networks. We considered the analysis of a complex network as an iterative process for extracting meaningful information at multiple granularities from a system of interacting objects. The quality of the interpretation of the networks depends on the completeness and expressiveness of the extracted knowledge representations. Pyramabs was designed to interpret a complex network through a disclosure of a pyramid of abstractions. The abstraction pyramid is a new knowledge representation that combines vertical and horizontal viewpoints at different degrees of abstraction. Interpretations in this form are more accurate and more meaningful than multilevel dendrograms or single-level graphs. Pyramabs can be accessed at <url>http://140.113.166.165/pyramabs.php/</url>.</p
    corecore