280,977 research outputs found

    Communication in Online Social Networks Fosters Cultural Isolation

    Get PDF
    Online social networks play an increasingly important role in communication between friends, colleagues, business partners, and family members. This development sparked public and scholarly debate about how these new platforms affect dynamics of cultural diversity. Formal models of cultural dissemination are powerful tools to study dynamics of cultural diversity but they are based on assumptions that represent traditional dyadic, face-To-face communication, rather than communication in online social networks. Unlike in models of face-To-face communication, where actors update their cultural traits after being influenced by one of their network contacts, communication in online social networks is often characterized by a one-To-many structure, in that users emit messages directly to a large number of network contacts. Using analytical tools and agent-based simulation, we show that this seemingly subtle difference can have profound implications for emergent dynamics of cultural dissemination. In particular, we show that within the framework of our model online communication fosters cultural diversity to a larger degree than offline communication and it increases chances that individuals and subgroups become culturally isolated from their network contacts

    Dynamics in online social networks

    Full text link
    An increasing number of today's social interactions occurs using online social media as communication channels. Some online social networks have become extremely popular in the last decade. They differ among themselves in the character of the service they provide to online users. For instance, Facebook can be seen mainly as a platform for keeping in touch with close friends and relatives, Twitter is used to propagate and receive news, LinkedIn facilitates the maintenance of professional contacts, Flickr gathers amateurs and professionals of photography, etc. Albeit different, all these online platforms share an ingredient that pervades all their applications. There exists an underlying social network that allows their users to keep in touch with each other and helps to engage them in common activities or interactions leading to a better fulfillment of the service's purposes. This is the reason why these platforms share a good number of functionalities, e.g., personal communication channels, broadcasted status updates, easy one-step information sharing, news feeds exposing broadcasted content, etc. As a result, online social networks are an interesting field to study an online social behavior that seems to be generic among the different online services. Since at the bottom of these services lays a network of declared relations and the basic interactions in these platforms tend to be pairwise, a natural methodology for studying these systems is provided by network science. In this chapter we describe some of the results of research studies on the structure, dynamics and social activity in online social networks. We present them in the interdisciplinary context of network science, sociological studies and computer science.Comment: 17 pages, 4 figures, book chapte

    Complex Network Analysis of State Spaces for Random Boolean Networks

    Full text link
    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains NN Boolean elements each with KK inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of an SSN at both local and global scales, as well as sample-to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity [Phys. Rev. Lett. 98, 198701 (2007)] of an SSN as a global topological measure. RBNs with 2≤K≤52 \leq K \leq 5 exhibit non-trivial fluctuations at both local and global scales, while K=2 exhibits the largest sample-to-sample, possibly non-self-averaging, fluctuations. We interpret the observed ``multi scale'' fluctuations in the SSNs as indicative of the criticality and complexity of K=2 RBNs. ``Garden of Eden'' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K>1K>1 SSNs can assume any integer value between 0 and 2N2^N, for K=1 all the non-GoE nodes in an SSN have the same in-degree which is always a power of two
    • …
    corecore