4 research outputs found

    Learning Hierarchical Review Graph Representations for Recommendation

    Full text link
    The user review data have been demonstrated to be effective in solving different recommendation problems. Previous review-based recommendation methods usually employ sophisticated compositional models, such as Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN), to learn semantic representations from the review data for recommendation. However, these methods mainly capture the local dependency between neighbouring words in a word window, and they treat each review equally. Therefore, they may not be effective in capturing the global dependency between words, and tend to be easily biased by noise review information. In this paper, we propose a novel review-based recommendation model, named Review Graph Neural Network (RGNN). Specifically, RGNN builds a specific review graph for each individual user/item, which provides a global view about the user/item properties to help weaken the biases caused by noise review information. A type-aware graph attention mechanism is developed to learn semantic embeddings of words. Moreover, a personalized graph pooling operator is proposed to learn hierarchical representations of the review graph to form the semantic representation for each user/item. We compared RGNN with state-of-the-art review-based recommendation approaches on two real-world datasets. The experimental results indicate that RGNN consistently outperforms baseline methods, in terms of Mean Square Error (MSE)

    Matching algorithms : fundamentals, applications and challenges

    Get PDF
    Matching plays a vital role in the rational allocation of resources in many areas, ranging from market operation to people's daily lives. In economics, the term matching theory is coined for pairing two agents in a specific market to reach a stable or optimal state. In computer science, all branches of matching problems have emerged, such as the question-answer matching in information retrieval, user-item matching in a recommender system, and entity-relation matching in the knowledge graph. A preference list is the core element during a matching process, which can either be obtained directly from the agents or generated indirectly by prediction. Based on the preference list access, matching problems are divided into two categories, i.e., explicit matching and implicit matching. In this paper, we first introduce the matching theory's basic models and algorithms in explicit matching. The existing methods for coping with various matching problems in implicit matching are reviewed, such as retrieval matching, user-item matching, entity-relation matching, and image matching. Furthermore, we look into representative applications in these areas, including marriage and labor markets in explicit matching and several similarity-based matching problems in implicit matching. Finally, this survey paper concludes with a discussion of open issues and promising future directions in the field of matching. © 2017 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Jing Ren, Xia Feng, Nargiz Sultanova" is provided in this record*

    Diversified Interactive Recommendation with Implicit Feedback

    No full text
    Interactive recommender systems that enable the interactions between users and the recommender system have attracted increasing research attention. Previous methods mainly focus on optimizing recommendation accuracy. However, they usually ignore the diversity of the recommendation results, thus usually results in unsatisfying user experiences. In this paper, we propose a novel diversified recommendation model, named Diversified Contextual Combinatorial Bandit (DC2B), for interactive recommendation with users' implicit feedback. Specifically, DC2B employs determinantal point process in the recommendation procedure to promote diversity of the recommendation results. To learn the model parameters, a Thompson sampling-type algorithm based on variational Bayesian inference is proposed. In addition, theoretical regret analysis is also provided to guarantee the performance of DC2B. Extensive experiments on real datasets are performed to demonstrate the effectiveness of the proposed method in balancing the recommendation accuracy and diversity
    corecore