11,545 research outputs found

    Diversification Based Static Index Pruning - Application to Temporal Collections

    Full text link
    Nowadays, web archives preserve the history of large portions of the web. As medias are shifting from printed to digital editions, accessing these huge information sources is drawing increasingly more attention from national and international institutions, as well as from the research community. These collections are intrinsically big, leading to index files that do not fit into the memory and an increase query response time. Decreasing the index size is a direct way to decrease this query response time. Static index pruning methods reduce the size of indexes by removing a part of the postings. In the context of web archives, it is necessary to remove postings while preserving the temporal diversity of the archive. None of the existing pruning approaches take (temporal) diversification into account. In this paper, we propose a diversification-based static index pruning method. It differs from the existing pruning approaches by integrating diversification within the pruning context. We aim at pruning the index while preserving retrieval effectiveness and diversity by pruning while maximizing a given IR evaluation metric like DCG. We show how to apply this approach in the context of web archives. Finally, we show on two collections that search effectiveness in temporal collections after pruning can be improved using our approach rather than diversity oblivious approaches

    Literature Study On Some Computational Healthcare Systems For Sustainability

    Get PDF
    Medical data released and shared through the cloud are very popular in practice, and information and knowledge bases can be enriched and shared through the cloud. The revolution presented by the cloud and big data can have a huge impact on the healthcare industry, and a new healthcare system is evolving. This is why we need to design a more appropriate health care system to meet the challenges presented by this revolution. The diversity of data sources requires a uniform standard of heterogeneous data management. On the one hand, due to the diversification of medical equipment, the data formats and the amount of data generated by various devices may be quite different, which requires that the system support data access by various medical devices to ensure high scalability and satisfy actual medical needs. On the other hand, the system needs to convert the received data into a unified standard to improve the efficiency of data storage, query, retrieval, processing, and analysis. This paper presents Literature Study on Computational Healthcare Systems for sustainability

    Big Data Visualization Tools

    Full text link
    Data visualization is the presentation of data in a pictorial or graphical format, and a data visualization tool is the software that generates this presentation. Data visualization provides users with intuitive means to interactively explore and analyze data, enabling them to effectively identify interesting patterns, infer correlations and causalities, and supports sense-making activities.Comment: This article appears in Encyclopedia of Big Data Technologies, Springer, 201

    On Measuring Bias in Online Information

    Get PDF
    Bias in online information has recently become a pressing issue, with search engines, social networks and recommendation services being accused of exhibiting some form of bias. In this vision paper, we make the case for a systematic approach towards measuring bias. To this end, we discuss formal measures for quantifying the various types of bias, we outline the system components necessary for realizing them, and we highlight the related research challenges and open problems.Comment: 6 pages, 1 figur

    Review Focus On Computational Healthcare Tools For Sustainability

    Get PDF
    The medical industry is experiencing an increase in the amount of data generated in terms of complexity, diversity, and timeliness; the industry increasingly relies on the collection and analysis of data. Therefore, to make better decisions, we need to collect data and conduct effective analysis. The cloud is a good choice for on-demand services for storing, processing, and analyzing data. Medical data released and shared through the cloud are very popular in practice, and information and knowledge bases can be enriched and shared through the cloud. The revolution presented by the cloud and big data can have a huge impact on the healthcare industry, and a new healthcare system is evolving. This is why we need to design a more appropriate health care system to meet the challenges presented by this revolution. The diversity of data sources requires a uniform standard of heterogeneous data management. On the one hand, due to the diversification of medical equipment, the data formats and the amount of data generated by various devices may be quite different, which requires that the system support data access by various medical devices to ensure high scalability and satisfy actual medical needs. On the other hand, the system needs to convert the received data into a unified standard to improve the efficiency of data storage, query, retrieval, processing, and analysis. This paper presents Review Study On Existing Computational Healthcare Tools For Sustainability
    corecore