13,330 research outputs found

    Dependability for declarative mechanisms: neural networks in autonomous vehicles decision making.

    Get PDF
    Despite being introduced in 1958, neural networks appeared in numerous applications of different fields in the last decade. This change was possible thanks to the reduced costs of computing power required for deep neural networks, and increasing available data that provide examples for training sets. The 2012 ImageNet image classification competition is often used as a example to describe how neural networks became at this time good candidates for applications: during this competition a neural network based solution won for the first time. In the following editions, all winning solutions were based on neural networks. Since then, neural networks have shown great results in several non critical applications (image recognition, sound recognition, text analysis, etc...). There is a growing interest to use them in critical applications as their ability to generalize makes them good candidates for applications such as autonomous vehicles, but standards do not allow that yet. Autonomous driving functions are currently researched by the industry with the final objective of producing in the near future fully autonomous vehicles, as defined by the fifth level of the SAE international (Society of Automotive Engineers) classification. Autonomous driving process is usually decomposed into four different parts: the where sensors get information from the environment, the where the data from the different sensors is merged into one representation of the environment, the that uses the representation of the environment to decide what should be the vehicles behavior and the commands to send to the actuators and finally the part that implements these commands. In this thesis, following the interest of the company Stellantis, we will focus on the decision part of this process, considering neural network based solution. Automotive being a safety critical application, it is required to implement and ensure the dependability of the systems, and this is why neural networks use is not allowed at the moment: their lack of safety forbid their use in such applications. Dependability methods for classical software systems are well known, but neural networks do not have yet similar dependable mechanisms to guarantee their trust. This problem is due to several reasons, among them the difficulty to test applications with a quasi-infinite operational domain and whose functions are hard to define exhaustively in the specifications. Here we can find the motivation of this thesis: how can we ensure the dependability of neural networks in the context of decision for autonomous vehicles? Research is now being conducted on the topic of dependability and safety of neural networks with several approaches being considered and our research is motivated by the great potential in safety critical applications mentioned above. In this thesis, we will focus on one category of method that seems to be a good candidate to ensure the dependability of neural networks by solving some of the problems of testing: the formal verification for neural networks. These methods aim to prove that a neural network respects a safety property on an entire range of its input and output domains. Formal verification is already used in other domains and is seen as a trusted method to give confidence in a system, but it remains for the moment a research topic for neural networks with currently no industrial applications. The main contributions of this thesis are the following: a proposal of a characterization of neural network from a software development perspective, and a corresponding classification of their faults, errors and failures, the identification of a potential threat to the use of formal verification. This threat is the erroneous neural network model problem, that may lead to trust a formally validated safety property that does not hold in real life, the realization of an experiment that implements a formal verification for neural networks in an autonomous driving application that is to the best of our knowledge the closest to industrial use. For this application, we chose to work with an ACC (Adaptive Cruise Control) function, which is an autonomous driving function that performs the longitudinal control of a vehicle. The experiment is conducted with the use of a simulator and a neural network formal verification tool. The other contributions of the thesis are the following: theoretical example of the erroneous neural network model problem and a practical example in our autonomous driving experiment, a proposal of detection and recovery mechanisms as a solution to the erroneous model problem mentioned above, an implementation of these detection and recovery mechanisms in our autonomous driving experiment and a discussion about difficulties and possible processes for the implementation of formal verification for neural networks that we developed during our experiments

    Combining YOLO and deep reinforcement learning for autonomous driving in public roadworks scenarios

    Get PDF
    Autonomous driving is emerging as a useful practical application of Artificial Intelligence (AI) algorithms regarding both supervised learning and reinforcement learning methods. AI is a well-known solution for some autonomous driving problems but it is not yet established and fully researched for facing real world problems regarding specific situations human drivers face every day, such as temporary roadworks and temporary signs. This is the core motivation for the proposed framework in this project. YOLOv3-tiny is used for detecting roadworks signs in the path traveled by the vehicle. Deep Deterministic Policy Gradient (DDPG) is used for controlling the behavior of the vehicle when overtaking the working zones. Security and safety of the passengers and the surrounding environment are the main concern taken into account. YOLOv3-tiny achieved an 94.8% mAP and proved to be reliable in real-world applications. DDPG made the vehicle behave with success more than 50% of the episodes when testing, although still needs some improvements to be transported to the real-world for secure and safe driving.This work has been supported by FCT-Fundacao para a Ciencia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. In addition, this work has also been funded through a doctoral scholarship from the Portuguese Foundation for Science and Technology (Fundacao para a Ciencia e a Tecnologia) [grant number SFRH/BD/06944/2020], with funds from the Portuguese Ministry of Science, Technology and Higher Education and the European Social Fund through the Programa Operacional do Capital Humano (POCH)

    The energy consumption of passenger vehicles in a transformed mobility system with autonomous, shared and fit-for-purpose electric vehicles in the Netherlands

    Get PDF
    Aims: This article explores the tank-to-wheel energy consumption of passenger transport at full adoption of fit-for-purpose shared and autonomous electric vehicles. Background: The energy consumption of passenger transport is increasing every year. Electrification of vehicles reduces their energy consumption significantly but is not the only disruptive trend in mobility. Shared fleets and autonomous driving are also expected to have large impacts and lead to fleets with one-person fit-for-purpose vehicles. The energy consumption of passenger transport in such scenarios is rarely discussed and we have not yet seen attempts to quantify it. Objective: The objective of this study is to quantify the tank-to-wheel energy consumption of passenger transport when the vehicle fleet is comprised of shared autonomous and electric fit-for-purpose vehicles and where cheap and accessible mobility leads to significantly increased mobility demand. Methodology: The approach consists of four steps. First, describing the key characteristics of a future mobility system with fit-for-purpose shared autonomous electric vehicles. Second, estimating the vehicle miles traveled in such a scenario. Third, estimating the energy use of the fit-for-purpose vehicles. And last, multiplying the mileages and energy consumptions of the vehicles and scaling the results with the population of the Netherlands. Results: Our findings show that the daily tank-to-wheel energy consumption from Dutch passenger transport in full adoption scenarios of shared autonomous electric vehicles ranges from 700 Wh to 2200 Wh per capita. This implies a reduction of 90% to 70% compared to the current situation. Conclusion: Full adoption of shared autonomous electric vehicles could increase the vehicle-miles-travelled and thus energy use of passenger transport by 30% to 150%. Electrification of vehicles reduces energy consumption by 75%. Autonomous driving has the potential of reducing the energy consumption by up to 40% and implementing one-person fit-for-purpose vehicles by another 50% to 60%. For our case study of the Netherlands, this means that the current 600 TJ/day that is consumed by passenger vehicles will be reduced to about 50 to 150 TJ/day at full adoption of SAEVs.</p

    The Impact of Social Influence, Technophobia, and Perceived Safety on Autonomous Vehicle Technology Adoption

    Get PDF
    The objective of this study was to determine whether there was a relationship between social influence, technophobia, perceived safety of autonomous vehicle technology, number of automobile-related accidents and the intention to use autonomous vehicles. The methodology was a descriptive, cross-sectional, correlational study. Theory of Planned Behavior provided the underlying theoretical framework. An online survey was the primary method of data collection. Pearson’s correlation and multiple linear regression were used for data analysis. This study found that both social influence and perceived safety of autonomous vehicle technology had significant, positive relationships with the intention to use autonomous vehicles. Additionally, a significant negative relationship was found among technophobia and intention to use autonomous vehicles. However, no relationship was found between the number of automobile-related accidents and intention to use autonomous vehicles. This study presents several original and significant findings as a contribution to the literature on autonomous vehicle technology adoption and proposes new dimensions of future research within this emerging field
    • 

    corecore