66,914 research outputs found

    Multi-Modal Multi-Scale Deep Learning for Large-Scale Image Annotation

    Full text link
    Image annotation aims to annotate a given image with a variable number of class labels corresponding to diverse visual concepts. In this paper, we address two main issues in large-scale image annotation: 1) how to learn a rich feature representation suitable for predicting a diverse set of visual concepts ranging from object, scene to abstract concept; 2) how to annotate an image with the optimal number of class labels. To address the first issue, we propose a novel multi-scale deep model for extracting rich and discriminative features capable of representing a wide range of visual concepts. Specifically, a novel two-branch deep neural network architecture is proposed which comprises a very deep main network branch and a companion feature fusion network branch designed for fusing the multi-scale features computed from the main branch. The deep model is also made multi-modal by taking noisy user-provided tags as model input to complement the image input. For tackling the second issue, we introduce a label quantity prediction auxiliary task to the main label prediction task to explicitly estimate the optimal label number for a given image. Extensive experiments are carried out on two large-scale image annotation benchmark datasets and the results show that our method significantly outperforms the state-of-the-art.Comment: Submited to IEEE TI

    MIRACLE at ImageCLEFannot 2008: Classification of Image Features for Medical Image Annotation

    Full text link
    This paper describes the participation of MIRACLE research consortium at the ImageCLEF Medical Image Annotation task of ImageCLEF 2008. A lot of effort was invested this year to develop our own image analysis system, based on MATLAB, to be used in our experiments. This system extracts a variety of global and local features including histogram, image statistics, Gabor features, fractal dimension, DCT and DWT coefficients, Tamura features and coocurrency matrix statistics. Then a k-Nearest Neighbour algorithm analyzes the extracted image feature vectors to determine the IRMA code associated to a given image. The focus of our experiments is mainly to test and evaluate this system in-depth and to make a comparison among diverse configuration parameters such as number of images for the relevance feedback to use in the classification module

    Gabor Barcodes for Medical Image Retrieval

    Full text link
    In recent years, advances in medical imaging have led to the emergence of massive databases, containing images from a diverse range of modalities. This has significantly heightened the need for automated annotation of the images on one side, and fast and memory-efficient content-based image retrieval systems on the other side. Binary descriptors have recently gained more attention as a potential vehicle to achieve these goals. One of the recently introduced binary descriptors for tagging of medical images are Radon barcodes (RBCs) that are driven from Radon transform via local thresholding. Gabor transform is also a powerful transform to extract texture-based information. Gabor features have exhibited robustness against rotation, scale, and also photometric disturbances, such as illumination changes and image noise in many applications. This paper introduces Gabor Barcodes (GBCs), as a novel framework for the image annotation. To find the most discriminative GBC for a given query image, the effects of employing Gabor filters with different parameters, i.e., different sets of scales and orientations, are investigated, resulting in different barcode lengths and retrieval performances. The proposed method has been evaluated on the IRMA dataset with 193 classes comprising of 12,677 x-ray images for indexing, and 1,733 x-rays images for testing. A total error score as low as 351351 (80%\approx 80\% accuracy for the first hit) was achieved.Comment: To appear in proceedings of The 2016 IEEE International Conference on Image Processing (ICIP 2016), Sep 25-28, 2016, Phoenix, Arizona, US

    Detecting the presence of large buildings in natural images

    Get PDF
    This paper addresses the issue of classification of lowlevel features into high-level semantic concepts for the purpose of semantic annotation of consumer photographs. We adopt a multi-scale approach that relies on edge detection to extract an edge orientation-based feature description of the image, and apply an SVM learning technique to infer the presence of a dominant building object in a general purpose collection of digital photographs. The approach exploits prior knowledge on the image context through an assumption that all input images are �outdoor�, i.e. indoor/outdoor classification (the context determination stage) has been performed. The proposed approach is validated on a diverse dataset of 1720 images and its performance compared with that of the MPEG-7 edge histogram descriptor

    Heritage image annotation via collective knowledge

    Full text link
    © 2019 Elsevier Ltd The automatic image annotation can provide semantic illustrations to understand image contents, and builds a foundation to develop algorithms that can search images within a large database. However, most current methods focus on solving the annotation problem by modeling the image visual content and tag semantic information, which overlooks the additional information, such as scene descriptions and locations. Moreover, the majority of current annotation datasets are visually consistent and only annotated by common visual objects and attributes, which makes the classic methods vulnerable to handle the more diverse image annotation. To address above issues, we propose to annotate images via collective knowledge, that is, we uncover relationships between the image and its neighbors by measuring similarities among metadata and conduct the metric learning to obtain the representations of image contents, we also generate semantic representations for images given collective semantic information from their neighbors. Two representations from different paradigms are embedded together to train an annotation model. We ground our model on the heritage image collection we collected from the library online open data. Annotations on the heritage image collection are not limited to common visual objects, and are highly relevant to historical events, and the diversity of the heritage image content is much larger than the current datasets, which makes it more suitable for this task. Comprehensive experimental results on the benchmark dataset indicate that the proposed model achieves the best performance compared to baselines and state-of-the-art methods

    An Inductive Transfer Learning Approach using Cycle-consistent Adversarial Domain Adaptation with Application to Brain Tumor Segmentation

    Full text link
    With recent advances in supervised machine learning for medical image analysis applications, the annotated medical image datasets of various domains are being shared extensively. Given that the annotation labelling requires medical expertise, such labels should be applied to as many learning tasks as possible. However, the multi-modal nature of each annotated image renders it difficult to share the annotation label among diverse tasks. In this work, we provide an inductive transfer learning (ITL) approach to adopt the annotation label of the source domain datasets to tasks of the target domain datasets using Cycle-GAN based unsupervised domain adaptation (UDA). To evaluate the applicability of the ITL approach, we adopted the brain tissue annotation label on the source domain dataset of Magnetic Resonance Imaging (MRI) images to the task of brain tumor segmentation on the target domain dataset of MRI. The results confirm that the segmentation accuracy of brain tumor segmentation improved significantly. The proposed ITL approach can make significant contribution to the field of medical image analysis, as we develop a fundamental tool to improve and promote various tasks using medical images

    EXACT: a collaboration toolset for algorithm-aided annotation of images with annotation version control

    Get PDF
    In many research areas, scientific progress is accelerated by multidisciplinary access to image data and their interdisciplinary annotation. However, keeping track of these annotations to ensure a high-quality multi-purpose data set is a challenging and labour intensive task. We developed the open-source online platform EXACT (EXpert Algorithm Collaboration Tool) that enables the collaborative interdisciplinary analysis of images from different domains online and offline. EXACT supports multi-gigapixel medical whole slide images as well as image series with thousands of images. The software utilises a flexible plugin system that can be adapted to diverse applications such as counting mitotic figures with a screening mode, finding false annotations on a novel validation view, or using the latest deep learning image analysis technologies. This is combined with a version control system which makes it possible to keep track of changes in the data sets and, for example, to link the results of deep learning experiments to specific data set versions. EXACT is freely available and has already been successfully applied to a broad range of annotation tasks, including highly diverse applications like deep learning supported cytology scoring, interdisciplinary multi-centre whole slide image tumour annotation, and highly specialised whale sound spectroscopy clustering
    corecore