2,057 research outputs found

    Diverse Exploration via Conjugate Policies for Policy Gradient Methods

    Full text link
    We address the challenge of effective exploration while maintaining good performance in policy gradient methods. As a solution, we propose diverse exploration (DE) via conjugate policies. DE learns and deploys a set of conjugate policies which can be conveniently generated as a byproduct of conjugate gradient descent. We provide both theoretical and empirical results showing the effectiveness of DE at achieving exploration, improving policy performance, and the advantage of DE over exploration by random policy perturbations.Comment: AAAI 201

    Reward is enough for convex MDPs

    Full text link
    Maximising a cumulative reward function that is Markov and stationary, i.e., defined over state-action pairs and independent of time, is sufficient to capture many kinds of goals in a Markov decision process (MDP). However, not all goals can be captured in this manner. In this paper we study convex MDPs in which goals are expressed as convex functions of the stationary distribution and show that they cannot be formulated using stationary reward functions. Convex MDPs generalize the standard reinforcement learning (RL) problem formulation to a larger framework that includes many supervised and unsupervised RL problems, such as apprenticeship learning, constrained MDPs, and so-called `pure exploration'. Our approach is to reformulate the convex MDP problem as a min-max game involving policy and cost (negative reward) `players', using Fenchel duality. We propose a meta-algorithm for solving this problem and show that it unifies many existing algorithms in the literature
    • …
    corecore