8 research outputs found

    The Homeostasis Protocol: Avoiding Transaction Coordination Through Program Analysis

    Get PDF
    Datastores today rely on distribution and replication to achieve improved performance and fault-tolerance. But correctness of many applications depends on strong consistency properties - something that can impose substantial overheads, since it requires coordinating the behavior of multiple nodes. This paper describes a new approach to achieving strong consistency in distributed systems while minimizing communication between nodes. The key insight is to allow the state of the system to be inconsistent during execution, as long as this inconsistency is bounded and does not affect transaction correctness. In contrast to previous work, our approach uses program analysis to extract semantic information about permissible levels of inconsistency and is fully automated. We then employ a novel homeostasis protocol to allow sites to operate independently, without communicating, as long as any inconsistency is governed by appropriate treaties between the nodes. We discuss mechanisms for optimizing treaties based on workload characteristics to minimize communication, as well as a prototype implementation and experiments that demonstrate the benefits of our approach on common transactional benchmarks

    Performance characteristics of semantics-based concurrency control protocols.

    Get PDF
    by Keith, Hang-kwong Mak.Thesis (M.Phil.)--Chinese University of Hong Kong, 1995.Includes bibliographical references (leaves 122-127).Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 2 --- Background --- p.4Chapter 2.1 --- Read/Write Model --- p.4Chapter 2.2 --- Abstract Data Type Model --- p.5Chapter 2.3 --- Overview of Semantics-Based Concurrency Control Protocols --- p.7Chapter 2.4 --- Concurrency Hierarchy --- p.9Chapter 2.5 --- Control Flow of the Strict Two Phase Locking Protocol --- p.11Chapter 2.5.1 --- Flow of an Operation --- p.12Chapter 2.5.2 --- Response Time of a Transaction --- p.13Chapter 2.5.3 --- Factors Affecting the Response Time of a Transaction --- p.14Chapter 3 --- Semantics-Based Concurrency Control Protocols --- p.16Chapter 3.1 --- Strict Two Phase Locking --- p.16Chapter 3.2 --- Conflict Relations --- p.17Chapter 3.2.1 --- Commutativity (COMM) --- p.17Chapter 3.2.2 --- Forward and Right Backward Commutativity --- p.19Chapter 3.2.3 --- Exploiting Context-Specific Information --- p.21Chapter 3.2.4 --- Relaxing Correctness Criterion by Allowing Bounded Inconsistency --- p.26Chapter 4 --- Related Work --- p.32Chapter 4.1 --- Exploiting Transaction Semantics --- p.32Chapter 4.2 --- Exploting Object Semantics --- p.34Chapter 4.3 --- Sacrificing Consistency --- p.35Chapter 4.4 --- Other Approaches --- p.37Chapter 5 --- Performance Study (Testbed Approach) --- p.39Chapter 5.1 --- System Model --- p.39Chapter 5.1.1 --- Main Memory Database --- p.39Chapter 5.1.2 --- System Configuration --- p.40Chapter 5.1.3 --- Execution of Operations --- p.41Chapter 5.1.4 --- Recovery --- p.42Chapter 5.2 --- Parameter Settings and Performance Metrics --- p.43Chapter 6 --- Performance Results and Analysis (Testbed Approach) --- p.46Chapter 6.1 --- Read/Write Model vs. Abstract Data Type Model --- p.46Chapter 6.2 --- Using Context-Specific Information --- p.52Chapter 6.3 --- Role of Conflict Ratio --- p.55Chapter 6.4 --- Relaxing the Correctness Criterion --- p.58Chapter 6.4.1 --- Overhead and Performance Gain --- p.58Chapter 6.4.2 --- Range Queries using Bounded Inconsistency --- p.63Chapter 7 --- Performance Study (Simulation Approach) --- p.69Chapter 7.1 --- Simulation Model --- p.70Chapter 7.1.1 --- Logical Queueing Model --- p.70Chapter 7.1.2 --- Physical Queueing Model --- p.71Chapter 7.2 --- Experiment Information --- p.74Chapter 7.2.1 --- Parameter Settings --- p.74Chapter 7.2.2 --- Performance Metrics --- p.75Chapter 8 --- Performance Results and Analysis (Simulation Approach) --- p.76Chapter 8.1 --- Relaxing Correctness Criterion of Serial Executions --- p.77Chapter 8.1.1 --- Impact of Resource Contention --- p.77Chapter 8.1.2 --- Impact of Infinite Resources --- p.80Chapter 8.1.3 --- Impact of Limited Resources --- p.87Chapter 8.1.4 --- Impact of Multiple Resources --- p.89Chapter 8.1.5 --- Impact of Transaction Type --- p.95Chapter 8.1.6 --- Impact of Concurrency Control Overhead --- p.96Chapter 8.2 --- Exploiting Context-Specific Information --- p.98Chapter 8.2.1 --- Impact of Limited Resource --- p.98Chapter 8.2.2 --- Impact of Infinite and Multiple Resources --- p.101Chapter 8.2.3 --- Impact of Transaction Length --- p.106Chapter 8.2.4 --- Impact of Buffer Size --- p.108Chapter 8.2.5 --- Impact of Concurrency Control Overhead --- p.110Chapter 8.3 --- Summary and Discussion --- p.113Chapter 8.3.1 --- Summary of Results --- p.113Chapter 8.3.2 --- Relaxing Correctness Criterion vs. Exploiting Context-Specific In- formation --- p.114Chapter 9 --- Conclusions --- p.116Bibliography --- p.122Chapter A --- Commutativity Tables for Queue Objects --- p.128Chapter B --- Specification of a Queue Object --- p.129Chapter C --- Commutativity Tables with Bounded Inconsistency for Queue Objects --- p.132Chapter D --- Some Implementation Issues --- p.134Chapter D.1 --- Important Data Structures --- p.134Chapter D.2 --- Conflict Checking --- p.136Chapter D.3 --- Deadlock Detection --- p.137Chapter E --- Simulation Results --- p.139Chapter E.l --- Impact of Infinite Resources (Bounded Inconsistency) --- p.140Chapter E.2 --- Impact of Multiple Resource (Bounded Inconsistency) --- p.141Chapter E.3 --- Impact of Transaction Type (Bounded Inconsistency) --- p.142Chapter E.4 --- Impact of Concurrency Control Overhead (Bounded Inconsistency) --- p.144Chapter E.4.1 --- Infinite Resources --- p.144Chapter E.4.2 --- Limited Resource --- p.146Chapter E.5 --- Impact of Resource Levels (Exploiting Context-Specific Information) --- p.149Chapter E.6 --- Impact of Buffer Size (Exploiting Context-Specific Information) --- p.150Chapter E.7 --- Impact of Concurrency Control Overhead (Exploiting Context-Specific In- formation) --- p.155Chapter E.7.1 --- Impact of Infinite Resources --- p.155Chapter E.7.2 --- Impact of Limited Resources --- p.157Chapter E.7.3 --- Impact of Transaction Length --- p.160Chapter E.7.4 --- Role of Conflict Ratio --- p.16
    corecore