12 research outputs found

    Matching Pursuits with Random Sequential Subdictionaries

    Get PDF
    Matching pursuits are a class of greedy algorithms commonly used in signal processing, for solving the sparse approximation problem. They rely on an atom selection step that requires the calculation of numerous projections, which can be computationally costly for large dictionaries and burdens their competitiveness in coding applications. We propose using a non adaptive random sequence of subdictionaries in the decomposition process, thus parsing a large dictionary in a probabilistic fashion with no additional projection cost nor parameter estimation. A theoretical modeling based on order statistics is provided, along with experimental evidence showing that the novel algorithm can be efficiently used on sparse approximation problems. An application to audio signal compression with multiscale time-frequency dictionaries is presented, along with a discussion of the complexity and practical implementations.Comment: 20 pages - accepted 2nd April 2012 at Elsevier Signal Processin

    A Physical Layer, Zero-round-trip-time, Multi-factor Authentication Protocol

    Get PDF
    Lightweight physical layer security schemes that have recently attracted a lot of attention include physical unclonable functions (PUFs), RF fingerprinting / proximity based authentication and secret key generation (SKG) from wireless fading coefficients. In this paper, we propose a fast, privacy-preserving, zero-round-trip-time (0-RTT), multi-factor authentication protocol, that for the first time brings all these elements together, i.e., PUFs, proximity estimation and SKG. We use Kalman filters to extract proximity estimates from real measurements of received signal strength (RSS) in an indoor environment to provide soft fingerprints for node authentication. By leveraging node mobility, a multitude of such fingerprints are extracted to provide resistance to impersonation type of attacks e.g., a false base station. Upon removal of the proximity fingerprints, the residual measurements are then used as an entropy source for the distillation of symmetric keys and subsequently used as resumption secrets in a 0-RTT fast authentication protocol. Both schemes are incorporated in a challenge-response PUF-based mutual authentication protocol, shown to be secure through formal proofs using Burrows, Abadi, and Needham (BAN) and Mao and Boyd (MB) logic, as well as the Tamarin-prover. Our protocol showcases that in future networks purely physical layer security solutions are tangible and can provide an alternative to public key infrastructure in specific scenarios

    Evaluation of Sigma-Delta-over-Fiber for High-Speed Wireless Applications

    Get PDF
    Future mobile communication networks aim to increase the communication speed,\ua0provide better reliability and improve the coverage. It needs to achieve all of these enhancements, while the number of users are increasing drastically. As a result, new base-station (BS) architectures where the signal processing is centralized and wireless access is provided through multiple, carefully coordinated remote radio heads are needed. Sigma-delta-over-fiber (SDoF) is a communication technique that can address both requirements and enable very low-complexity, phase coherent remote radio transmission, while transmitting wide-band communication signals with high quality. This thesis investigates the potential and limitations of SDoF communication links as an enabler for future mobile networks.In the first part of the thesis, an ultra-high-speed SDoF link is realized by using state-of-the-art vertical-cavity surface-emitting-lasers (VCSEL). The effects of VCSEL characteristics on such links in terms of signal quality, energy efficiency and potential lifespan is investigated. Furthermore, the potential and limitations of UHS-SDoF are evaluated with signals having various parameters. The results show that, low-cost, reliable, energy efficient, high signal quality SDoF links can be formed by using emerging VCSEL technology. Therefore, ultra-high-speed SDoF is a very promising technique for beyond 10~GHz communication systems.In the second part of the thesis, a multiple-input-multiple-output (MIMO) communication testbed with physically separated antenna elements, distributed-MIMO, is formed by multiple SDoF links. It is shown that the digital up-conversion, performed with a shared local-oscillator/clock at the central unit, provides excellent phase coherency between the physically distributed antenna elements. The proposed testbed demonstrates the advantages of SDoF for realizing distributed MIMO systems and is a powerful tool to perform various communication experiments in real environments.In general, SDoF is a solution for the downlink of a communication system, i.e. from central unit to remote radio head, however, the low complexity and low cost requirement of the remote radio heads makes it difficult to realize the uplinks of such systems. The third part of this thesis proposes an all-digital solution for realizing complementary uplinks for SDoF systems. The proposed structure is extensively investigated through simulations and measurements and the results demonstrate that it is possible realize all-digital, duplex, optical communication links between central units and remote radio heads.In summary, the results in this thesis demonstrate the potential of SDoF for wideband, distributed MIMO communication systems and proposes a new architecture for all-digital duplex communication links. Overall, the thesis shows that SDoF technique is powerful technique for emerging and future mobile communication networks, since it enables a centralized structure with low complexity remote radio heads and provides high signal quality

    Signal processing techniques for mobile multimedia systems

    Get PDF
    Recent trends in wireless communication systems show a significant demand for the delivery of multimedia services and applications over mobile networks - mobile multimedia - like video telephony, multimedia messaging, mobile gaming, interactive and streaming video, etc. However, despite the ongoing development of key communication technologies that support these applications, the communication resources and bandwidth available to wireless/mobile radio systems are often severely limited. It is well known, that these bottlenecks are inherently due to the processing capabilities of mobile transmission systems, and the time-varying nature of wireless channel conditions and propagation environments. Therefore, new ways of processing and transmitting multimedia data over mobile radio channels have become essential which is the principal focus of this thesis. In this work, the performance and suitability of various signal processing techniques and transmission strategies in the application of multimedia data over wireless/mobile radio links are investigated. The proposed transmission systems for multimedia communication employ different data encoding schemes which include source coding in the wavelet domain, transmit diversity coding (space-time coding), and adaptive antenna beamforming (eigenbeamforming). By integrating these techniques into a robust communication system, the quality (SNR, etc) of multimedia signals received on mobile devices is maximised while mitigating the fast fading and multi-path effects of mobile channels. To support the transmission of high data-rate multimedia applications, a well known multi-carrier transmission technology known as Orthogonal Frequency Division Multiplexing (OFDM) has been implemented. As shown in this study, this results in significant performance gains when combined with other signal-processing techniques such as spa ce-time block coding (STBC). To optimise signal transmission, a novel unequal adaptive modulation scheme for the communication of multimedia data over MIMO-OFDM systems has been proposed. In this system, discrete wavelet transform/subband coding is used to compress data into their respective low-frequency and high-frequency components. Unlike traditional methods, however, data representing the low-frequency data are processed and modulated separately as they are more sensitive to the distortion effects of mobile radio channels. To make use of a desirable subchannel state, such that the quality (SNR) of the multimedia data recovered at the receiver is optimized, we employ a lookup matrix-adaptive bit and power allocation (LM-ABPA) algorithm. Apart from improving the spectral efficiency of OFDM, the modified LM-ABPA scheme, sorts and allocates subcarriers with the highest SNR to low-frequency data and the remaining to the least important data. To maintain a target system SNR, the LM-ABPA loading scheme assigns appropriate signal constella tion sizes and transmit power levels (modulation type) across all subcarriers and is adapted to the varying channel conditions such that the average system error-rate (SER/BER) is minimised. When configured for a constant data-rate load, simulation results show significant performance gains over non-adaptive systems. In addition to the above studies, the simulation framework developed in this work is applied to investigate the performance of other signal processing techniques for multimedia communication such as blind channel equalization, and to examine the effectiveness of a secure communication system based on a logistic chaotic generator (LCG) for chaos shift-keying (CSK)

    Flat panel display signal processing

    Get PDF
    Televisions (TVs) have shown considerable technological progress since their introduction almost a century ago. Starting out as small, dim and monochrome screens in wooden cabinets, TVs have evolved to large, bright and colorful displays in plastic boxes. It took until the turn of the century, however, for the TV to become like a ‘picture on the wall’. This happened when the bulky Cathode Ray Tube (CRT) was replaced with thin and light-weight Flat Panel Displays (FPDs), such as Liquid Crystal Displays (LCDs) or Plasma Display Panels (PDPs). However, the TV system and transmission formats are still strongly coupled to the CRT technology, whereas FPDs use very different principles to convert the electronic video signal to visible images. These differences result in image artifacts that the CRT never had, but at the same time provide opportunities to improve FPD image quality beyond that of the CRT. This thesis presents an analysis of the properties of flat panel displays, their relation to image quality, and video signal processing algorithms to improve the quality of the displayed images. To analyze different types of displays, the display signal chain is described using basic principles common to all displays. The main function of a display is to create visible images (light) from an electronic signal (video), requiring display chain functions like opto-electronic effect, spatial and temporal addressing and reconstruction, and color synthesis. The properties of these functions are used to describe CRT, LCDs, and PDPs, showing that these displays perform the same functions, using different implementations. These differences have a number of consequences, that are further investigated in this thesis. Spatial and temporal aspects, corresponding to ‘static’ and ‘dynamic’ resolution respectively, are covered in detail. Moreover, video signal processing is an essential part of the display signal chain for FPDs, because the display format will in general no longer match the source format. In this thesis, it is investigated how specific FPD properties, especially related to spatial and temporal addressing and reconstruction, affect the video signal processing chain. A model of the display signal chain is presented, and applied to analyze FPD spatial properties in relation to static resolution. In particular, the effect of the color subpixels, that enable color image reproduction in FPDs, is analyzed. The perceived display resolution is strongly influenced by the color subpixel arrangement. When taken into account in the signal chain, this improves the perceived resolution on FPDs, which clearly outperform CRTs in this respect. The cause and effect of this improvement, also for alternative subpixel arrangements, is studied using the display signal model. However, the resolution increase cannot be achieved without video processing. This processing is efficiently combined with image scaling, which is always required in the FPD display signal chain, resulting in an algorithm called ‘subpixel image scaling’. A comparison of the effects of subpixel scaling on several subpixel arrangements shows that the largest increase in perceived resolution is found for two-dimensional subpixel arrangements. FPDs outperform CRTs with respect to static resolution, but not with respect to ‘dynamic resolution’, i.e. the perceived resolution of moving images. Life-like reproduction of moving images is an important requirement for a TV display, but the temporal properties of FPDs cause artifacts in moving images (‘motion artifacts’), that are not found in CRTs. A model of the temporal aspects of the display signal chain is used to analyze dynamic resolution and motion artifacts on several display types, in particular LCD and PDP. Furthermore, video signal processing algorithms are developed that can reduce motion artifacts and increase the dynamic resolution. The occurrence of motion artifacts is explained by the fact that the human visual system tracks moving objects. This converts temporal effects on the display into perceived spatial effects, that can appear in very different ways. The analysis shows how addressing mismatches in the chain cause motion-dependent misalignment of image data, e.g. resulting in the ‘dynamic false contour’ artifact in PDPs. Also, non-ideal temporal reconstruction results in ‘motion blur’, i.e. a loss of sharpness of moving images, which is typical for LCDs. The relation between motion blur, dynamic resolution, and temporal properties of LCDs is analyzed using the display signal model in the temporal (frequency) domain. The concepts of temporal aperture, motion aperture and temporal display bandwidth are introduced, which enable characterization of motion blur in a simple and direct way. This is applied to compare several motion blur reduction methods, based on modified display design and driving. This thesis further describes the development of several video processing algorithms that can reduce motion artifacts. It is shown that the motion of objects in the image plays an essential role in these algorithms, i.e. they require motion estimation and compensation techniques. In LCDs, video processing for motion artifact reduction involves a compensation for the temporal reconstruction characteristics of the display, leading to the ‘motion compensated inverse filtering’ algorithm. The display chain model is used to analyze this algorithm, and several methods to increase its performance are presented. In PDPs, motion artifact reduction can be achieved with ‘motion compensated subfield generation’, for which an advanced algorithm is presented

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks
    corecore