394 research outputs found

    On the computation of the fundamental subspaces for descriptor systems

    Get PDF
    In this paper, we investigate several theoretical and computational aspects of fundamental subspaces for linear time-invariant descriptor systems, which appear in the solution of many control and estimation problems. Different types of reachability and controllability for descriptor systems are described and discussed. The Rosenbrock system matrix pencil is employed for the computation of supremal output-nulling subspaces and supremal output-nulling reachability subspaces for descriptor systems

    Fault estimation and active fault tolerant control for linear parameter varying descriptor systems

    Get PDF
    Starting with the baseline controller design, this paper proposes an integrated approach of active fault tolerant control based on proportional derivative extended state observer (PDESO) for linear parameter varying descriptor systems. The PDESO can simultaneously provide the estimates of the system states, sensor faults, and actuator faults. The L₂ robust performance of the closed-loop system to bounded exogenous disturbance and bounded uncertainty is achieved by a two-step design procedure adapted from the traditional observer-based controller design. Furthermore, an LMI pole-placement region and the L₂ robustness performance are combined into a multiobjective formulation by suitably combing the appropriate LMI descriptions. A parameter-varying system example is given to illustrate the design procedure and the validity of the proposed integrated design approach

    Impulse Elimination and Fault-Tolerant Preview Controller Design for a Class of Descriptor Systems

    Get PDF
    In this paper, a fault-tolerant preview controller is designed for a class of impulse controllable continuous time descriptor systems with sensor faults. Firstly, the impulse is eliminated by introducing state prefeedback; then an algebraic equation and a normal control system are obtained by restricted equivalent transformation for the descriptor system after impulse elimination. Next, the model following problem in fault-tolerant control is transformed into the optimal regulation problem of the augmented system which is constructed by a general method. And the final augmented system and its corresponding performance index function are obtained by state feedback for the augmented system constructed above. The controller with preview effect for the final augmented system is attained based on the existing conclusions of optimal preview control; then, the fault-tolerant preview controller for the original system is obtained through integral and backstepping. The relationships between the stabilisability and detectability of the final augmented system and the corresponding characteristics of the original descriptor system are also strictly discussed. The effectiveness of the proposed method is verified by numerical simulation

    Singular LQ Problem for Irregular Singular Systems

    Get PDF

    Cooperative optimal preview tracking for linear descriptor multi-agent systems

    Get PDF
    © 2018 The Franklin Institute. In this paper, a cooperative optimal preview tracking problem is considered for continuous-time descriptor multi-agent systems with a directed topology containing a spanning tree. By the acyclic assumption and state augmentation technique, it is shown that the cooperative tracking problem is equivalent to local optimal regulation problems of a set of low-dimensional descriptor augmented subsystems. To design distributed optimal preview controllers, restricted system equivalent (r.s.e.) and preview control theory are first exploited to obtain optimal preview controllers for reduced-order normal subsystems. Then, by using the invertibility of restricted equivalent relations, a constructive method for designing distributed controller is presented which also yields an explicit admissible solution for the generalized algebraic Riccati equation. Sufficient conditions for achieving global cooperative preview tracking are proposed proving that the distributed controllers are able to stabilize the descriptor augmented subsystems asymptotically. Finally, the validity of the theoretical results is illustrated via numerical simulation

    Modelling & analysis of hybrid dynamic systems using a bond graph approach

    Get PDF
    Hybrid models are those containing continuous and discontinuous behaviour. In constructing dynamic systems models, it is frequently desirable to abstract rapidly changing, highly nonlinear behaviour to a discontinuity. Bond graphs lend themselves to systems modelling by being multi-disciplinary and reflecting the physics of the system. One advantage is that they can produce a mathematical model in a form that simulates quickly and efficiently. Hybrid bond graphs are a logical development which could further improve speed and efficiency. A range of hybrid bond graph forms have been proposed which are suitable for either simulation or further analysis, but not both. None have reached common usage. A Hybrid bond graph method is proposed here which is suitable for simulation as well as providing engineering insight through analysis. This new method features a distinction between structural and parametric switching. The controlled junction is used for the former, and gives rise to dynamic causality. A controlled element is developed for the latter. Dynamic causality is unconstrained so as to aid insight, and a new notation is proposed. The junction structure matrix for the hybrid bond graph features Boolean terms to reflect the controlled junctions in the graph structure. This hybrid JSM is used to generate a mixed-Boolean state equation. When storage elements are in dynamic causality, the resulting system equation is implicit. The focus of this thesis is the exploitation of the model. The implicit form enables application of matrix-rank criteria from control theory, and control properties can be seen in the structure and causal assignment. An impulsive mode may occur when storage elements are in dynamic causality, but otherwise there are no energy losses associated with commutation because this method dictates the way discontinuities are abstracted. The main contribution is therefore a Hybrid Bond Graph which reflects the physics of commutating systems and offers engineering insight through the choice of controlled elements and dynamic causality. It generates a unique, implicit, mixed-Boolean system equation, describing all modes of operation. This form is suitable for both simulation and analysis

    Observer based active fault tolerant control of descriptor systems

    Get PDF
    The active fault tolerant control (AFTC) uses the information provided by fault detection and fault diagnosis (FDD) or fault estimation (FE) systems offering an opportunity to improve the safety, reliability and survivability for complex modern systems. However, in the majority of the literature the roles of FDD/FE and reconfigurable control are described as separate design issues often using a standard state space (i.e. non-descriptor) system model approach. These separate FDD/FE and reconfigurable control designs may not achieve desired stability and robustness performance when combined within a closed-loop system.This work describes a new approach to the integration of FE and fault compensation as a form of AFTC within the context of a descriptor system rather than standard state space system. The proposed descriptor system approach has an integrated controller and observer design strategy offering better design flexibility compared with the equivalent approach using a standard state space system. An extended state observer (ESO) is developed to achieve state and fault estimation based on a joint linear matrix inequality (LMI) approach to pole-placement and H∞ optimization to minimize the effects of bounded exogenous disturbance and modelling uncertainty. A novel proportional derivative (PD)-ESO is introduced to achieve enhanced estimation performance, making use of the additional derivative gain. The proposed approaches are evaluated using a common numerical example adapted from the recent literature and the simulation results demonstrate clearly the feasibility and power of the integrated estimation and control AFTC strategy. The proposed AFTC design strategy is extended to an LPV descriptor system framework as a way of dealing with the robustness and stability of the system with bounded parameter variations arising from the non-linear system, where a numerical example demonstrates the feasibility of the use of the PD-ESO for FE and compensation integrated within the AFTC system.A non-linear offshore wind turbine benchmark system is studied as an application of the proposed design strategy. The proposed AFTC scheme uses the existing industry standard wind turbine generator angular speed reference control system as a “baseline” control within the AFTC scheme. The simulation results demonstrate the added value of the new AFTC system in terms of good fault tolerance properties, compared with the existing baseline system
    corecore