7 research outputs found

    Sample Approximation-Based Deflation Approaches for Chance SINR Constrained Joint Power and Admission Control

    Get PDF
    Consider the joint power and admission control (JPAC) problem for a multi-user single-input single-output (SISO) interference channel. Most existing works on JPAC assume the perfect instantaneous channel state information (CSI). In this paper, we consider the JPAC problem with the imperfect CSI, that is, we assume that only the channel distribution information (CDI) is available. We formulate the JPAC problem into a chance (probabilistic) constrained program, where each link's SINR outage probability is enforced to be less than or equal to a specified tolerance. To circumvent the computational difficulty of the chance SINR constraints, we propose to use the sample (scenario) approximation scheme to convert them into finitely many simple linear constraints. Furthermore, we reformulate the sample approximation of the chance SINR constrained JPAC problem as a composite group sparse minimization problem and then approximate it by a second-order cone program (SOCP). The solution of the SOCP approximation can be used to check the simultaneous supportability of all links in the network and to guide an iterative link removal procedure (the deflation approach). We exploit the special structure of the SOCP approximation and custom-design an efficient algorithm for solving it. Finally, we illustrate the effectiveness and efficiency of the proposed sample approximation-based deflation approaches by simulations.Comment: The paper has been accepted for publication in IEEE Transactions on Wireless Communication

    A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems

    Get PDF
    A receiver design problem for multi-access space-time block coded multiple-input multiple-output systems is considered. To hedge the mismatch between the true and the estimated channel state information (CSI), several robust receivers have been developed in the past decades. Among these receivers, the Gaussian robust receiver has been shown to be superior in performance. This receiver is designed based on the assumption that the CSI mismatch has Gaussian distribution. However, in real-world applications, the assumption of Guassianity might not hold. Motivated by this fact, a more general distributionally robust receiver is proposed in this paper, where only the mean and the variance of the CSI mismatch distribution are required in the receiver design. A tractable semi-definite programming (SDP) reformulation of the robust receiver design is developed. To suppress the self-interferences, a more advanced distributionally robust receiver is proposed. A tight convex approximation is given and the corresponding tractable SDP reformulation is developed. Moreover, for the sake of easy implementation, we present a simplified distributionally robust receiver. Simulations results are provided to show the effectiveness of our design by comparing with some existing well-known receivers

    Multi-objective resource optimization in space-aerial-ground-sea integrated networks

    Get PDF
    Space-air-ground-sea integrated (SAGSI) networks are envisioned to connect satellite, aerial, ground, and sea networks to provide connectivity everywhere and all the time in sixth-generation (6G) networks. However, the success of SAGSI networks is constrained by several challenges including resource optimization when the users have diverse requirements and applications. We present a comprehensive review of SAGSI networks from a resource optimization perspective. We discuss use case scenarios and possible applications of SAGSI networks. The resource optimization discussion considers the challenges associated with SAGSI networks. In our review, we categorized resource optimization techniques based on throughput and capacity maximization, delay minimization, energy consumption, task offloading, task scheduling, resource allocation or utilization, network operation cost, outage probability, and the average age of information, joint optimization (data rate difference, storage or caching, CPU cycle frequency), the overall performance of network and performance degradation, software-defined networking, and intelligent surveillance and relay communication. We then formulate a mathematical framework for maximizing energy efficiency, resource utilization, and user association. We optimize user association while satisfying the constraints of transmit power, data rate, and user association with priority. The binary decision variable is used to associate users with system resources. Since the decision variable is binary and constraints are linear, the formulated problem is a binary linear programming problem. Based on our formulated framework, we simulate and analyze the performance of three different algorithms (branch and bound algorithm, interior point method, and barrier simplex algorithm) and compare the results. Simulation results show that the branch and bound algorithm shows the best results, so this is our benchmark algorithm. The complexity of branch and bound increases exponentially as the number of users and stations increases in the SAGSI network. We got comparable results for the interior point method and barrier simplex algorithm to the benchmark algorithm with low complexity. Finally, we discuss future research directions and challenges of resource optimization in SAGSI networks
    corecore