1,127 research outputs found

    Asymptotic enumeration and limit laws for graphs of fixed genus

    Full text link
    It is shown that the number of labelled graphs with n vertices that can be embedded in the orientable surface S_g of genus g grows asymptotically like c(g)n5(g1)/21γnn!c^{(g)}n^{5(g-1)/2-1}\gamma^n n! where c(g)>0c^{(g)}>0, and γ27.23\gamma \approx 27.23 is the exponential growth rate of planar graphs. This generalizes the result for the planar case g=0, obtained by Gimenez and Noy. An analogous result for non-orientable surfaces is obtained. In addition, it is proved that several parameters of interest behave asymptotically as in the planar case. It follows, in particular, that a random graph embeddable in S_g has a unique 2-connected component of linear size with high probability

    Random geometric complexes

    Full text link
    We study the expected topological properties of Cech and Vietoris-Rips complexes built on i.i.d. random points in R^d. We find higher dimensional analogues of known results for connectivity and component counts for random geometric graphs. However, higher homology H_k is not monotone when k > 0. In particular for every k > 0 we exhibit two thresholds, one where homology passes from vanishing to nonvanishing, and another where it passes back to vanishing. We give asymptotic formulas for the expectation of the Betti numbers in the sparser regimes, and bounds in the denser regimes. The main technical contribution of the article is in the application of discrete Morse theory in geometric probability.Comment: 26 pages, 3 figures, final revisions, to appear in Discrete & Computational Geometr

    Non-contractible loops in the dense O(n) loop model on the cylinder

    Get PDF
    A lattice model of critical dense polymers O(0)O(0) is considered for the finite cylinder geometry. Due to the presence of non-contractible loops with a fixed fugacity ξ\xi, the model is a generalization of the critical dense polymers solved by Pearce, Rasmussen and Villani. We found the free energy for any height NN and circumference LL of the cylinder. The density ρ\rho of non-contractible loops is found for NN \rightarrow \infty and large LL. The results are compared with those obtained for the anisotropic quantum chain with twisted boundary conditions. Using the latter method we obtained ρ\rho for any O(n)O(n) model and an arbitrary fugacity.Comment: arXiv admin note: text overlap with arXiv:0810.223
    corecore