123,953 research outputs found

    The PROOF Distributed Parallel Analysis Framework based on ROOT

    Full text link
    The development of the Parallel ROOT Facility, PROOF, enables a physicist to analyze and understand much larger data sets on a shorter time scale. It makes use of the inherent parallelism in event data and implements an architecture that optimizes I/O and CPU utilization in heterogeneous clusters with distributed storage. The system provides transparent and interactive access to gigabytes today. Being part of the ROOT framework PROOF inherits the benefits of a performant object storage system and a wealth of statistical and visualization tools. This paper describes the key principles of the PROOF architecture and the implementation of the system. We will illustrate its features using a simple example and present measurements of the scalability of the system. Finally we will discuss how PROOF can be interfaced and make use of the different Grid solutions.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, CA, USA, March 2003, 5 pages, LaTeX, 4 eps figures. PSN TULT00

    Interactive Visualization of the Largest Radioastronomy Cubes

    Full text link
    3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively visualize larger-than-memory 3D astronomical data cubes by utilizing a heterogeneous cluster of CPUs and GPUs. The system partitions the data volume into smaller sub-volumes that are distributed over the rendering workstations. A GPU-based ray casting volume rendering is performed to generate images for each sub-volume, which are composited to generate the whole volume output, and returned to the user. Datasets including the HI Parkes All Sky Survey (HIPASS - 12 GB) southern sky and the Galactic All Sky Survey (GASS - 26 GB) data cubes were used to demonstrate our framework's performance. The framework can render the GASS data cube with a maximum render time < 0.3 second with 1024 x 1024 pixels output resolution using 3 rendering workstations and 8 GPUs. Our framework will scale to visualize larger datasets, even of Terabyte order, if proper hardware infrastructure is available.Comment: 15 pages, 12 figures, Accepted New Astronomy July 201

    Unleashing the Power of Distributed CPU/GPU Architectures: Massive Astronomical Data Analysis and Visualization case study

    Full text link
    Upcoming and future astronomy research facilities will systematically generate terabyte-sized data sets moving astronomy into the Petascale data era. While such facilities will provide astronomers with unprecedented levels of accuracy and coverage, the increases in dataset size and dimensionality will pose serious computational challenges for many current astronomy data analysis and visualization tools. With such data sizes, even simple data analysis tasks (e.g. calculating a histogram or computing data minimum/maximum) may not be achievable without access to a supercomputing facility. To effectively handle such dataset sizes, which exceed today's single machine memory and processing limits, we present a framework that exploits the distributed power of GPUs and many-core CPUs, with a goal of providing data analysis and visualizing tasks as a service for astronomers. By mixing shared and distributed memory architectures, our framework effectively utilizes the underlying hardware infrastructure handling both batched and real-time data analysis and visualization tasks. Offering such functionality as a service in a "software as a service" manner will reduce the total cost of ownership, provide an easy to use tool to the wider astronomical community, and enable a more optimized utilization of the underlying hardware infrastructure.Comment: 4 Pages, 1 figures, To appear in the proceedings of ADASS XXI, ed. P.Ballester and D.Egret, ASP Conf. Serie

    GPU-Based Volume Rendering of Noisy Multi-Spectral Astronomical Data

    Full text link
    Traditional analysis techniques may not be sufficient for astronomers to make the best use of the data sets that current and future instruments, such as the Square Kilometre Array and its Pathfinders, will produce. By utilizing the incredible pattern-recognition ability of the human mind, scientific visualization provides an excellent opportunity for astronomers to gain valuable new insight and understanding of their data, particularly when used interactively in 3D. The goal of our work is to establish the feasibility of a real-time 3D monitoring system for data going into the Australian SKA Pathfinder archive. Based on CUDA, an increasingly popular development tool, our work utilizes the massively parallel architecture of modern graphics processing units (GPUs) to provide astronomers with an interactive 3D volume rendering for multi-spectral data sets. Unlike other approaches, we are targeting real time interactive visualization of datasets larger than GPU memory while giving special attention to data with low signal to noise ratio - two critical aspects for astronomy that are missing from most existing scientific visualization software packages. Our framework enables the astronomer to interact with the geometrical representation of the data, and to control the volume rendering process to generate a better representation of their datasets.Comment: 4 pages, 1 figure, to appear in the proceedings of ADASS XIX, Oct 4-8 2009, Sapporo, Japan (ASP Conf. Series
    corecore