39 research outputs found

    Self-Organizing Radio Resource Management and Backhaul Dimensioning for Cellular Networks

    Get PDF
    The huge appetite for mobile broadband has resulted to continuous and complementary improvement in both radio access technology and mobile backhaul of cellular networks, along with network densification. Femtocells are foreseen to complement traditional macro base stations (BSs) in Long Term Evolution (LTE) and future cellular networks.  Deployment of femtocells, introduce new requirements for distributing phase synchronization and interference management in heterogeneous network. Achieving phase synchronization for indoor femtocells will be beneficial for time division duplexing (TDD) operation and inter-cell interference cancellation and management techniques, but challenging to achieve as global positioning system does not work indoors. In this thesis, we propose coordinated transmission and reception algorithms to reduce interference across BSs, and thereby achieve better network-wide phase synchronization over the air. We also cover the problem of selecting component carriers for dense small cell network, by improving the throughput of cell-edge user equipment's (UEs). We propose three strategies: Selfish, Altruistic and Symmetric for primary carrier selection and remove the outage of the macro UEs near the closed subscriber group (CSG) femtocells. Further, we propose dynamic frequency selection algorithm for component carrier selection, where decisions to select or drop a carrier are based on gain/loss predictions made from UE handover measurements. Thereby, we maximize the sum utility of the dense femtocell network, which includes mean-rate, weighted fair-rate, proportional fair-rate and max-min utility.  Mobile backhaul dimensioning is studied to improve the handover and provide the cost-effective backhaul opportunity for femtocells deployed in emerging markets. In a packet-switched wireless system e.g. LTE, data packets are needed to be efficiently forwarded between BSs during handover over the backhaul. We improve the packet forwarding handover mechanism by reducing the amount of forwarded data between BSs. Another challenge lies in equipping the femtocells with backhaul, where copper cable, optical fiber or microwave radio links are expensive options for unplanned emerging market case. We consider leveraging macro LTE networks to backhaul High Speed Packet Access femtocells, thereby highlight the possibilities for cost-effective capacity upgrades of dense settlements

    Load balancing using cell range expansion in LTE advanced heterogeneous networks

    Get PDF
    The use of heterogeneous networks is on the increase, fueled by consumer demand for more data. The main objective of heterogeneous networks is to increase capacity. They offer solutions for efficient use of spectrum, load balancing and improvement of cell edge coverage amongst others. However, these solutions have inherent challenges such as inter-cell interference and poor mobility management. In heterogeneous networks there is transmit power disparity between macro cell and pico cell tiers, which causes load imbalance between the tiers. Due to the conventional user-cell association strategy, whereby users associate to a base station with the strongest received signal strength, few users associate to small cells compared to macro cells. To counter the effects of transmit power disparity, cell range expansion is used instead of the conventional strategy. The focus of our work is on load balancing using cell range expansion (CRE) and network utility optimization techniques to ensure fair sharing of load in a macro and pico cell LTE Advanced heterogeneous network. The aim is to investigate how to use an adaptive cell range expansion bias to optimize Pico cell coverage for load balancing. Reviewed literature points out several approaches to solve the load balancing problem in heterogeneous networks, which include, cell range expansion and utility function optimization. Then, we use cell range expansion, and logarithmic utility functions to design a load balancing algorithm. In the algorithm, user and base station associations are optimized by adapting CRE bias to pico base station load status. A price update mechanism based on a suboptimal solution of a network utility optimization problem is used to adapt the CRE bias. The price is derived from the load status of each pico base station. The performance of the algorithm was evaluated by means of an LTE MATLAB toolbox. Simulations were conducted according to 3GPP and ITU guidelines for modelling heterogeneous networks and propagation environment respectively. Compared to a static CRE configuration, the algorithm achieved more fairness in load distribution. Further, it achieved a better trade-off between cell edge and cell centre user throughputs. [Please note: this thesis file has been deferred until December 2016

    Planning Wireless Cellular Networks of Future: Outlook, Challenges and Opportunities

    Get PDF
    Cell planning (CP) is the most important phase in the life cycle of a cellular system as it determines the operational expenditure, capital expenditure, as well as the long-term performance of the system. Therefore, it is not surprising that CP problems have been studied extensively for the past three decades for all four generations of cellular systems. However, the fact that small cells, a major component of future networks, are anticipated to be deployed in an impromptu fashion makes CP for future networks vis-a-vis 5G a conundrum. Furthermore, in emerging cellular systems that incorporate a variety of different cell sizes and types, heterogeneous networks (HetNets), energy efficiency, self-organizing network features, control and data plane split architectures (CDSA), massive multiple input multiple out (MIMO), coordinated multipoint (CoMP), cloud radio access network, and millimetre-wave-based cells plus the need to support Internet of Things (IoT) and device-to-device (D2D) communication require a major paradigm shift in the way cellular networks have been planned in the past. The objective of this paper is to characterize this paradigm shift by concisely reviewing past developments, analyzing the state-of-the-art challenges, and identifying future trends, challenges, and opportunities in CP in the wake of 5G. More specifically, in this paper, we investigate the problem of planning future cellular networks in detail. To this end, we first provide a brief tutorial on the CP process to identify the peculiarities that make CP one of the most challenging problems in wireless communications. This tutorial is followed by a concise recap of past research in CP. We then review key findings from recent studies that have attempted to address the aforementioned challenges in planning emerging networks. Finally, we discuss the range of technical factors that need to be taken into account while planning future networks and the promising research directions that necessitates the paradigm shift to do so

    Developments of 5G Technology

    Get PDF
    This technology is the future of current LTE technology which would be a boost to the future of wireless and computer networks, as the speeds would be way higher than the current LTE networks, which will push the technology to a new level. This technology will make the radio channels to support data access speeds up to 10 Gb/s which will turn the bandwidth radio channels as WiFi. Comparing it with other LTE technology\u27s it has high speed and capacity, support interactive multimedia, voice, internet and its data rate is 1 Gbps which makes it faster than other LTE’s . This is much more effective than other technology’s due to its advanced billing interfaces. This paper provides detail explanation of 5G technology, its architecture, challenges, advantages and disadvantages, issues and ends with future of 5G technology

    Techno-economical Analysis of Indoor Enterprise Solutions

    Get PDF

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version

    D13.1 Fundamental issues on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.1 del projecte europeu NEWCOM#The report presents the current status in the research area of energy- and bandwidth-efficient communications and networking and highlights the fundamental issues still open for further investigation. Furthermore, the report presents the Joint Research Activities (JRAs) which will be performed within WP1.3. For each activity there is the description, the identification of the adherence with the identified fundamental open issues, a presentation of the initial results, and a roadmap for the planned joint research work in each topic.Preprin
    corecore