3,199 research outputs found

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling

    A Connectionist Theory of Phenomenal Experience

    Get PDF
    When cognitive scientists apply computational theory to the problem of phenomenal consciousness, as many of them have been doing recently, there are two fundamentally distinct approaches available. Either consciousness is to be explained in terms of the nature of the representational vehicles the brain deploys; or it is to be explained in terms of the computational processes defined over these vehicles. We call versions of these two approaches vehicle and process theories of consciousness, respectively. However, while there may be space for vehicle theories of consciousness in cognitive science, they are relatively rare. This is because of the influence exerted, on the one hand, by a large body of research which purports to show that the explicit representation of information in the brain and conscious experience are dissociable, and on the other, by the classical computational theory of mind – the theory that takes human cognition to be a species of symbol manipulation. But two recent developments in cognitive science combine to suggest that a reappraisal of this situation is in order. First, a number of theorists have recently been highly critical of the experimental methodologies employed in the dissociation studies – so critical, in fact, it’s no longer reasonable to assume that the dissociability of conscious experience and explicit representation has been adequately demonstrated. Second, classicism, as a theory of human cognition, is no longer as dominant in cognitive science as it once was. It now has a lively competitor in the form of connectionism; and connectionism, unlike classicism, does have the computational resources to support a robust vehicle theory of consciousness. In this paper we develop and defend this connectionist vehicle theory of consciousness. It takes the form of the following simple empirical hypothesis: phenomenal experience consists in the explicit representation of information in neurally realized PDP networks. This hypothesis leads us to re-assess some common wisdom about consciousness, but, we will argue, in fruitful and ultimately plausible ways

    Metaphor as categorisation: a connectionist implementation

    Get PDF
    A key issue for models of metaphor comprehension is to explain how in some metaphorical comparison , only some features of B are transferred to A. The features of B that are transferred to A depend both on A and on B. This is the central thrust of Black's well known interaction theory of metaphor comprehension (1979). However, this theory is somewhat abstract, and it is not obvious how it may be implemented in terms of mental representations and processes. In this paper we describe a simple computational model of on-line metaphor comprehension which combines Black's interaction theory with the idea that metaphor comprehension is a type of categorisation process (Glucksberg & Keysar, 1990, 1993). The model is based on a distributed connectionist network depicting semantic memory (McClelland & Rumelhart, 1986). The network learns feature-based information about various concepts. A metaphor is comprehended by applying a representation of the first term A to the network storing knowledge of the second term B, in an attempt to categorise it as an exemplar of B. The output of this network is a representation of A transformed by the knowledge of B. We explain how this process embodies an interaction of knowledge between the two terms of the metaphor, how it accords with the contemporary theory of metaphor stating that comprehension for literal and metaphorical comparisons is carried out by identical mechanisms (Gibbs, 1994), and how it accounts for both existing empirical evidence (Glucksberg, McGlone, & Manfredi, 1997) and generates new predictions. In this model, the distinction between literal and metaphorical language is one of degree, not of kind

    The Mode of Computing

    Full text link
    The Turing Machine is the paradigmatic case of computing machines, but there are others, such as Artificial Neural Networks, Table Computing, Relational-Indeterminate Computing and diverse forms of analogical computing, each of which based on a particular underlying intuition of the phenomenon of computing. This variety can be captured in terms of system levels, re-interpreting and generalizing Newell's hierarchy, which includes the knowledge level at the top and the symbol level immediately below it. In this re-interpretation the knowledge level consists of human knowledge and the symbol level is generalized into a new level that here is called The Mode of Computing. Natural computing performed by the brains of humans and non-human animals with a developed enough neural system should be understood in terms of a hierarchy of system levels too. By analogy from standard computing machinery there must be a system level above the neural circuitry levels and directly below the knowledge level that is named here The mode of Natural Computing. A central question for Cognition is the characterization of this mode. The Mode of Computing provides a novel perspective on the phenomena of computing, interpreting, the representational and non-representational views of cognition, and consciousness.Comment: 35 pages, 8 figure

    Modelling the Developing Mind: From Structure to Change

    Get PDF
    This paper presents a theory of cognitive change. The theory assumes that the fundamental causes of cognitive change reside in the architecture of mind. Thus, the architecture of mind as specified by the theory is described first. It is assumed that the mind is a three-level universe involving (1) a processing system that constrains processing potentials, (2) a set of specialized capacity systems that guide understanding of different reality and knowledge domains, and (3) a hypecognitive system that monitors and controls the functioning of all other systems. The paper then specifies the types of change that may occur in cognitive development (changes within the levels of mind, changes in the relations between structures across levels, changes in the efficiency of a structure) and a series of general (e.g., metarepresentation) and more specific mechanisms (e.g., bridging, interweaving, and fusion) that bring the changes about. It is argued that different types of change require different mechanisms. Finally, a general model of the nature of cognitive development is offered. The relations between the theory proposed in the paper and other theories and research in cognitive development and cognitive neuroscience is discussed throughout the paper

    Binding and Normalization of Binary Sparse Distributed Representations by Context-Dependent Thinning

    Get PDF
    Distributed representations were often criticized as inappropriate for encoding of data with a complex structure. However Plate's Holographic Reduced Representations and Kanerva's Binary Spatter Codes are recent schemes that allow on-the-fly encoding of nested compositional structures by real-valued or dense binary vectors of fixed dimensionality. In this paper we consider procedures of the Context-Dependent Thinning which were developed for representation of complex hierarchical items in the architecture of Associative-Projective Neural Networks. These procedures provide binding of items represented by sparse binary codevectors (with low probability of 1s). Such an encoding is biologically plausible and allows a high storage capacity of distributed associative memory where the codevectors may be stored. In contrast to known binding procedures, Context-Dependent Thinning preserves the same low density (or sparseness) of the bound codevector for varied number of component codevectors. Besides, a bound codevector is not only similar to another one with similar component codevectors (as in other schemes), but it is also similar to the component codevectors themselves. This allows the similarity of structures to be estimated just by the overlap of their codevectors, without retrieval of the component codevectors. This also allows an easy retrieval of the component codevectors. Examples of algorithmic and neural-network implementations of the thinning procedures are considered. We also present representation examples for various types of nested structured data (propositions using role-filler and predicate-arguments representation schemes, trees, directed acyclic graphs) using sparse codevectors of fixed dimension. Such representations may provide a fruitful alternative to the symbolic representations of traditional AI, as well as to the localist and microfeature-based connectionist representations
    • …
    corecore