548 research outputs found

    Distributed Self Fault Diagnosis in Wireless Sensor Networks using Statistical Methods

    Get PDF
    Wireless sensor networks (WSNs) are widely used in various real life applications where the sensor nodes are randomly deployed in hostile, human inaccessible and adversarial environments. One major research focus in wireless sensor networks in the past decades has been to diagnose the sensor nodes to identify their fault status. This helps to provide continuous service of the network despite the occurrence of failure due to environmental conditions. Some of the burning issues related to fault diagnosis in wireless sensor networks have been addressed in this thesis mainly focusing on improvement of diagnostic accuracy, reduction of communication overhead and latency, and robustness to erroneous data by using statistical methods. All the proposed algorithms are evaluated analytically and implemented in standard network simulator NS3 (version 3.19). A distributed self fault diagnosis algorithm using neighbor coordination (DSFDNC) is proposed to identify both hard and soft faulty sensor nodes in wireless sensor networks. The algorithm is distributed (runs in each sensor node), self diagnosable (each node identifies its fault status) and can diagnose the most common faults like stuck at zero, stuck at one, random data and hard faults. In this algorithm, each sensor node gathered the observed data from the neighbors and computes the mean to check the presence of faulty sensor node. If a node diagnoses a faulty sensor node in the neighbors, then it compares observed data with the data of the neighbors and predicts its probable fault status. The final fault status is determined by diffusing the fault information obtained from the neighbors. The accuracy and completeness of the algorithm are verified based on the statistical analysis over sensors data. The performance parameters such as diagnosis accuracy, false alarm rate, false positive rate, total number of message exchanges, energy consumption, network life time, and diagnosis latency of the DSFDNC algorithm are determined for different fault probabilities and average degrees and compared with existing distributed fault diagnosis algorithms. To enhance the diagnosis accuracy, another self fault diagnosis algorithm is proposed based on hypothesis testing (DSFDHT) using the neighbor coordination approach. The Newman-Pearson hypothesis test is used to diagnose the soft fault status of each sensor node along with the neighbors. The algorithm can diagnose the faulty sensor node when the average degree of the network is less. The diagnosis accuracy, false alarm rate and false positive rate performance of the DSFDHT algorithm are improved over DSFDNC for sparse wireless sensor networks by keeping other performance parameters nearly same. The classical methods for fault finding using mean, median, majority voting and hypothesis testing are not suitable for large scale wireless sensor networks due to large devi- ation in transmitted data by faulty sensor nodes. Therefore, a modified three sigma edit test based self fault diagnosis algorithm (DSFD3SET) is proposed which diagnoses in an efficient manner over a large scale wireless sensor networks. The diagnosis accuracy, false alarm rate, and false positive rate of the proposed algorithm improve as compared to that of the DSFDNC and DSFDHT algorithms. The algorithm enhances the total number of message exchanges, energy consumption, network life time, and diagnosis latency, because the proposed algorithm needs less number of message exchanges over the algorithms such as DSFDNC and DSFDHT. In the DSFDNC, DSFDHT and DSFD3SET algorithms, the faulty sensor nodes are considered as soft faulty nodes which behave permanently. However in wireless sensor networks, the sensor nodes behave either fault free or faulty during different periods of time and are considered as intermittent faulty sensor nodes. Diagnosing intermittent faulty sensor nodes in wireless sensor networks is a challenging problem, because of inconsistent result patterns generated by the sensor nodes. The traditional distributed fault diagnosis (DIFD) algorithms consume more message exchanges to obtain the global fault status of the network. To optimize the number of message exchanges over the network, a self fault diagnosis algorithm is proposed here, which repeatedly conducts the self fault diagnosis procedure based on the modified three sigma edit test over a duration to identify the intermittent faulty sensor nodes. The algorithm needs less number of iterations to identify the intermittent faulty sensor nodes. The simulation results show that, the performance of the HISFD3SET algorithm improves in diagnosis accuracy, false alarm rate and false positive rate over the DIFD algorith

    Distributed Intermittent Fault Diagnosis in Wireless Sensor Network Using Likelihood Ratio Test

    Get PDF
    In current days, sensor nodes are deployed in hostile environments for various military and commercial applications. Sensor nodes are becoming faulty and having adverse effects in the network if they are not diagnosed and inform the fault status to other nodes. Fault diagnosis is difficult when the nodes behave faulty some times and provide good data at other times. The intermittent disturbances may be random or kind of spikes either in regular or irregular intervals. In literature, the fault diagnosis algorithms are based on statistical methods using repeated testing or machine learning. To avoid more complex and time consuming repeated test processes and computationally complex machine learning methods, we proposed a one shot likelihood ratio test (LRT) here to determine the fault status of the sensor node. The proposed method measures the statistics of the received data over a certain period of time and then compares the likelihood ratio with the threshold value associated with a certain tolerance limit. The simulation results using a real time data set shows that the new method provides better detection accuracy (DA) with minimum false positive rate (FPR) and false alarm rate (FAR) over the modified three sigma test. LRT based hybrid fault diagnosis method detecting the fault status of a sensor node in wireless sensor network (WSN) for real time measured data with 100% DA, 0% FAR and 0% FPR if the probability of the data from faulty node exceeds 25%

    FCS-MBFLEACH: Designing an Energy-Aware Fault Detection System for Mobile Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) include large-scale sensor nodes that are densely distributed over a geographical region that is completely randomized for monitoring, identifying, and analyzing physical events. The crucial challenge in wireless sensor networks is the very high dependence of the sensor nodes on limited battery power to exchange information wirelessly as well as the non-rechargeable battery of the wireless sensor nodes, which makes the management and monitoring of these nodes in terms of abnormal changes very difficult. These anomalies appear under faults, including hardware, software, anomalies, and attacks by raiders, all of which affect the comprehensiveness of the data collected by wireless sensor networks. Hence, a crucial contraption should be taken to detect the early faults in the network, despite the limitations of the sensor nodes. Machine learning methods include solutions that can be used to detect the sensor node faults in the network. The purpose of this study is to use several classification methods to compute the fault detection accuracy with different densities under two scenarios in regions of interest such as MB-FLEACH, one-class support vector machine (SVM), fuzzy one-class, or a combination of SVM and FCS-MBFLEACH methods. It should be noted that in the study so far, no super cluster head (SCH) selection has been performed to detect node faults in the network. The simulation outcomes demonstrate that the FCS-MBFLEACH method has the best performance in terms of the accuracy of fault detection, false-positive rate (FPR), average remaining energy, and network lifetime compared to other classification methods

    The Distributed Convergence Classifier Using the Finite Difference

    Get PDF
    The paper presents a novel distributed classifier of the convergence, which allows to detect the convergence/the divergence of a distributed converging algorithm. Since this classifier is supposed to be primarily applied in wireless sensor networks, its proposal makes provision for the character of these networks. The classifier is based on the mechanism of comparison of the forward finite differences from two consequent iterations. The convergence/the divergence is classifiable only in terms of the changes of the inner states of a particular node and therefore, no message redundancy is required for its proper functionality

    A short survey on fault diagnosis in wireless sensor networks

    Get PDF
    Fault diagnosis is one of the most important and demand- able issues of the network. It makes the networks reliable and robust to operate in the normal way to handle almost all types of faults or failures. Additionally, it helps sensor nodes to work smoothly and efficiently till the end of their lifetime. This short survey paper not only presents a clear picture of the recent proposed techniques, but also draws comparisons and contrasts among them to diagnose the potential faults. In addition, it proposes some potential future-work directions which would lead to open new research directions in the field of fault diagnosis

    Energy Efficient Distributed Fault Identification Algorithm in Wireless Sensor Networks

    Get PDF

    SECURE AND EFFICIENT FAULT NODE DETECTION IN WIRELESS SENSOR NETWORKS

    Get PDF
    Propose an included, energy efficient, resource allocation framework for overcommitted clouds. The concord makes massive energy investments by 1) minimizing Physical Machine overload occurrences via virtual machine resource usage monitoring and prophecy, and 2) reducing the number of active PMs via efficient VM relocation and residency. Using real Google data consisting of a 29 day traces collected from a crowd together contain more than 12K PMs, we show that our proposed framework outperforms existing overload avoidance techniques and prior VM migration strategies by plummeting the number of unexpected overloads, minimizing migration overhead, increasing resource utilization, and reducing cloud energy consumption.&nbsp

    A Novel Method For Detecting Faulty Nodes In Tolerant Network

    Get PDF
    Recently proposed arrangements experience the ill effects of long delays in distinguishing and isolating hubs making defective data. This is inadmissible to DTNs where nodes meet only now and then. This proposes a completely gave and fundamentally implementable way to deal with empower each DTN node to quickly perceive whether its sensors are passing on defective information. The dynamical way of the proposed calculation is approximated by some steady time state conditions, whose equality is projected. The closeness of getting away hand hubs, trying to inconvenience the blemished hub affirmation process, is moreover considered

    A new analysis of distributed faulty node detection in DTNS

    Get PDF
    Previously proposed solutions suffer from long delays in identifying and dividing nodes producing faulty data. This is unsuitable to DTNs where nodes meet only rarely. This proposes a completely conveyed and essentially implementable way to deal with enable each DTN node to quickly distinguish whether its sensors are delivering flawed information. The dynamical conduct of the proposed algorithm is approximated by some persistent time state conditions, whose balance is portrayed. The nearness of getting out of hand nodes, attempting to bother the faulty node recognition process, is additionally considered

    A Lightweight Fault-Detection Scheme for Resource-Constrained Solar Insecticidal Lamp IoTs

    Get PDF
    The Solar Insecticidal Lamp Internet of Things (SIL-IoTs) is an emerging paradigm that extends Internet of Things (IoT) technology to agricultural-enabled electronic devices. Ensuring the dependability and safety of SIL-IoTs is crucial for pest monitoring, prediction, and prevention. However, SIL-IoTs can experience system performance degradation due to failures, which can be attributed to complex environmental changes and device deterioration in agricultural settings. This study proposes a sensor-level lightweight fault-detection scheme that takes into account realistic constraints such as computational resources and energy. By analyzing fault characteristics, we designed a distributed fault-detection method based on operation condition differences, interval number residuals, and feature residuals. Several experiments were conducted to validate the effectiveness of the proposed method. The results demonstrated that our method achieves an average F1-score of 95.59%. Furthermore, the proposed method only consumes an additional 0.27% of the total power, and utilizes 0.9% RAM and 3.1% Flash on the Arduino of the SIL-IoTs node. These findings indicated that the proposed method is lightweight and energy-efficient
    corecore