39,100 research outputs found

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    Distributed Constrained Recursive Nonlinear Least-Squares Estimation: Algorithms and Asymptotics

    Full text link
    This paper focuses on the problem of recursive nonlinear least squares parameter estimation in multi-agent networks, in which the individual agents observe sequentially over time an independent and identically distributed (i.i.d.) time-series consisting of a nonlinear function of the true but unknown parameter corrupted by noise. A distributed recursive estimator of the \emph{consensus} + \emph{innovations} type, namely CIWNLS\mathcal{CIWNLS}, is proposed, in which the agents update their parameter estimates at each observation sampling epoch in a collaborative way by simultaneously processing the latest locally sensed information~(\emph{innovations}) and the parameter estimates from other agents~(\emph{consensus}) in the local neighborhood conforming to a pre-specified inter-agent communication topology. Under rather weak conditions on the connectivity of the inter-agent communication and a \emph{global observability} criterion, it is shown that at every network agent, the proposed algorithm leads to consistent parameter estimates. Furthermore, under standard smoothness assumptions on the local observation functions, the distributed estimator is shown to yield order-optimal convergence rates, i.e., as far as the order of pathwise convergence is concerned, the local parameter estimates at each agent are as good as the optimal centralized nonlinear least squares estimator which would require access to all the observations across all the agents at all times. In order to benchmark the performance of the proposed distributed CIWNLS\mathcal{CIWNLS} estimator with that of the centralized nonlinear least squares estimator, the asymptotic normality of the estimate sequence is established and the asymptotic covariance of the distributed estimator is evaluated. Finally, simulation results are presented which illustrate and verify the analytical findings.Comment: 28 pages. Initial Submission: Feb. 2016, Revised: July 2016, Accepted: September 2016, To appear in IEEE Transactions on Signal and Information Processing over Networks: Special Issue on Inference and Learning over Network
    • …
    corecore