1,067 research outputs found

    Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution

    Get PDF
    MIMO processing plays a central part towards the recent increase in spectral and energy efficiencies of wireless networks. MIMO has grown beyond the original point-to-point channel and nowadays refers to a diverse range of centralized and distributed deployments. The fundamental bottleneck towards enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate channel state information at the transmitter (CSIT). This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on dense heterogeneous networks and transmitters equipped with a large number of antennas. CSIT inaccuracy results in a multi-user interference problem that is the primary bottleneck of MIMO wireless networks. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. In this paper, we depart from this conventional approach and introduce the readers to a promising strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions. Open problems, impact on standard specifications and operational challenges are also discussed.Comment: accepted to IEEE Communication Magazine, special issue on LTE Evolutio

    A stochastic approximation algorithm for stochastic semidefinite programming

    Get PDF
    Motivated by applications to multi-antenna wireless networks, we propose a distributed and asynchronous algorithm for stochastic semidefinite programming. This algorithm is a stochastic approximation of a continous- time matrix exponential scheme regularized by the addition of an entropy-like term to the problem's objective function. We show that the resulting algorithm converges almost surely to an ε\varepsilon-approximation of the optimal solution requiring only an unbiased estimate of the gradient of the problem's stochastic objective. When applied to throughput maximization in wireless multiple-input and multiple-output (MIMO) systems, the proposed algorithm retains its convergence properties under a wide array of mobility impediments such as user update asynchronicities, random delays and/or ergodically changing channels. Our theoretical analysis is complemented by extensive numerical simulations which illustrate the robustness and scalability of the proposed method in realistic network conditions.Comment: 25 pages, 4 figure

    Adaptive Multicell 3D Beamforming in Multi-Antenna Cellular Networks

    Full text link
    We consider a cellular network with multi-antenna base stations (BSs) and single-antenna users, multicell cooperation, imperfect channel state information, and directional antennas each with a vertically adjustable beam. We investigate the impact of the elevation angle of the BS antenna pattern, denoted as tilt, on the performance of the considered network when employing either a conventional single-cell transmission or a fully cooperative multicell transmission. Using the results of this investigation, we propose a novel hybrid multicell cooperation technique in which the intercell interference is controlled via either cooperative beamforming in the horizontal plane or coordinated beamfroming in the vertical plane of the wireless channel, denoted as adaptive multicell 3D beamforming. The main idea is to divide the coverage area into two disjoint vertical regions and adapt the multicell cooperation strategy at the BSs when serving each region. A fair scheduler is used to share the time-slots between the vertical regions. It is shown that the proposed technique can achieve performance comparable to that of a fully cooperative transmission but with a significantly lower complexity and signaling requirements. To make the performance analysis computationally efficient, analytical expressions for the user ergodic rates under different beamforming strategies are also derived.Comment: Accepted for publication in IEEE Transaction on Vehicular Technolog

    Degrees of Freedom of Time Correlated MISO Broadcast Channel with Delayed CSIT

    Full text link
    We consider the time correlated multiple-input single-output (MISO) broadcast channel where the transmitter has imperfect knowledge on the current channel state, in addition to delayed channel state information. By representing the quality of the current channel state information as P^-{\alpha} for the signal-to-noise ratio P and some constant {\alpha} \geq 0, we characterize the optimal degree of freedom region for this more general two-user MISO broadcast correlated channel. The essential ingredients of the proposed scheme lie in the quantization and multicasting of the overheard interferences, while broadcasting new private messages. Our proposed scheme smoothly bridges between the scheme recently proposed by Maddah-Ali and Tse with no current state information and a simple zero-forcing beamforming with perfect current state information.Comment: revised and final version, to appear in IEEE transactions on Information Theor

    A Hierarchical Rate Splitting Strategy for FDD Massive MIMO under Imperfect CSIT

    Full text link
    In a multiuser MIMO broadcast channel, the rate performance is affected by the multiuser interference when the Channel State Information at the Transmitter (CSIT) is imperfect. To tackle the interference problem, a Rate-Splitting (RS) approach has been proposed recently, which splits one user's message into a common and a private part, and superimposes the common message on top of the private messages. The common message is drawn from a public codebook and should be decoded by all users. In this paper, we propose a novel and general framework, denoted as Hierarchical Rate Splitting (HRS), that is particularly suited to FDD massive MIMO systems. HRS simultaneously transmits private messages intended to each user and two kinds of common messages that can be decoded by all users and by a subset of users, respectively. We analyse the asymptotic sum rate of HRS under imperfect CSIT. A closed-form power allocation is derived which provides insights into the effects of system parameters. Finally, simulation results validate the significant sum rate gain of HRS over various baselines.Comment: Accepted paper at IEEE CAMAD 201
    corecore