1,147 research outputs found

    Distributed opportunistic sensing and fusion for traffic congestion detection

    Get PDF
    Our particular research in the Distributed Analytics and Information Science International Technology Alliance (DAIS ITA) is focused on ”Anticipatory Situational Understanding for Coalitions”. This paper takes the concrete example of detecting and predicting traffic congestion in the UK road transport network from existing generic sensing sources, such as real-time CCTV imagery and video, which are publicly available for this purpose. This scenario has been chosen carefully as we believe that in a typical city, all data relevant to transport network congestion information is not generally available from a single unified source, and that different organizations in the city (e.g. the weather office, the police force, the general public, etc.) have their own different sensors which can provide information potentially relevant to the traffic congestion problem. In this paper we are looking at the problem of (a) identifying congestion using cameras that, for example, the police department may have access to, and (b) fusing that with other data from other agencies in order to (c) augment any base data provided by the official transportation department feeds. By taking this coalition approach this requires using standard cameras to do different supplementary tasks like car counting, and in this paper we examine how well those tasks can be done with RNN/CNN, and other distributed machine learning processes. In this paper we provide details of an initial four-layer architecture and potential tooling to enable rapid formation of human/machine hybrid teams in this setting, with a focus on opportunistic and distributed processing of the data at the edge of the network. In future work we plan to integrate additional data-sources to further augment the core imagery data

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    On the Feasibility of Social Network-based Pollution Sensing in ITSs

    Full text link
    Intense vehicular traffic is recognized as a global societal problem, with a multifaceted influence on the quality of life of a person. Intelligent Transportation Systems (ITS) can play an important role in combating such problem, decreasing pollution levels and, consequently, their negative effects. One of the goals of ITSs, in fact, is that of controlling traffic flows, measuring traffic states, providing vehicles with routes that globally pursue low pollution conditions. How such systems measure and enforce given traffic states has been at the center of multiple research efforts in the past few years. Although many different solutions have been proposed, very limited effort has been devoted to exploring the potential of social network analysis in such context. Social networks, in general, provide direct feedback from people and, as such, potentially very valuable information. A post that tells, for example, how a person feels about pollution at a given time in a given location, could be put to good use by an environment aware ITS aiming at minimizing contaminant emissions in residential areas. This work verifies the feasibility of using pollution related social network feeds into ITS operations. In particular, it concentrates on understanding how reliable such information is, producing an analysis that confronts over 1,500,000 posts and pollution data obtained from on-the- field sensors over a one-year span.Comment: 10 pages, 15 figures, Transaction Forma
    • …
    corecore