1,442 research outputs found

    Event-triggered leader-following formation control of general linear multi-agent systems with distributed infinite input time delays

    Get PDF
    By employing event-triggered control technique, this paper investigates the leaderfollowing formation control problem of general linear multi-agent systems with distributed infinite input time delays. To decrease computing costs, a novel event-triggered formation protocol taking into consideration of the distributed infinite time delays between agents is put forward. Under the designed triggering function and triggering condition, a sufficient condition on leader-following formation is obtained, and then the Zeno-behavior of triggering time sequences is excluded for the concerned closed-loop system. The continuous update of controller for each agent is avoided. Finally, the correctness and the effectiveness of these theoretical results are demonstrated by two numerical examples

    Synchronization of multiple rigid body systems: a survey

    Full text link
    The multi-agent system has been a hot topic in the past few decades owing to its lower cost, higher robustness, and higher flexibility. As a particular multi-agent system, the multiple rigid body system received a growing interest since its wide applications in transportation, aerospace, and ocean exploration. Due to the non-Euclidean configuration space of attitudes and the inherent nonlinearity of the dynamics of rigid body systems, synchronization of multiple rigid body systems is quite challenging. This paper aims to present an overview of the recent progress in synchronization of multiple rigid body systems from the view of two fundamental problems. The first problem focuses on attitude synchronization, while the second one focuses on cooperative motion control in that rotation and translation dynamics are coupled. Finally, a summary and future directions are given in the conclusion

    Event-based H∞ consensus control of multi-agent systems with relative output feedback: The finite-horizon case

    Get PDF
    In this technical note, the H∞ consensus control problem is investigated over a finite horizon for general discrete time-varying multi-agent systems subject to energy-bounded external disturbances. A decentralized estimation-based output feedback control protocol is put forward via the relative output measurements. A novel event-based mechanism is proposed for each intelligent agent to utilize the available information in order to decide when to broadcast messages and update control input. The aim of the problem addressed is to co-design the time-varying controller and estimator parameters such that the controlled multi-agent systems achieve consensus with a disturbance attenuation level γ over a finite horizon [0,T]. A constrained recursive Riccati difference equation approach is developed to derive the sufficient conditions under which the H∞ consensus performance is guaranteed in the framework of event-based scheme. Furthermore, the desired controller and estimator parameters can be iteratively computed by resorting to the Moore-Penrose pseudo inverse. Finally, the effectiveness of the developed event-based H∞ consensus control strategy is demonstrated in the numerical simulation

    Periodic event-triggered output regulation for linear multi-agent systems

    Full text link
    This study considers the problem of periodic event-triggered (PET) cooperative output regulation for a class of linear multi-agent systems. The advantage of the PET output regulation is that the data transmission and triggered condition are only needed to be monitored at discrete sampling instants. It is assumed that only a small number of agents can have access to the system matrix and states of the leader. Meanwhile, the PET mechanism is considered not only in the communication between various agents, but also in the sensor-to-controller and controller-to-actuator transmission channels for each agent. The above problem set-up will bring some challenges to the controller design and stability analysis. Based on a novel PET distributed observer, a PET dynamic output feedback control method is developed for each follower. Compared with the existing works, our method can naturally exclude the Zeno behavior, and the inter-event time becomes multiples of the sampling period. Furthermore, for every follower, the minimum inter-event time can be determined \textit{a prior}, and computed directly without the knowledge of the leader information. An example is given to verify and illustrate the effectiveness of the new design scheme.Comment: 17 pages, 13 figures, submitted to Automatica. accepte

    Self-triggered Consensus Control of Multi-agent Systems from Data

    Full text link
    This paper considers self-triggered consensus control of unknown linear multi-agent systems (MASs). Self-triggering mechanisms (STMs) are widely used in MASs, thanks to their advantages in avoiding continuous monitoring and saving computing and communication resources. However, existing results require the knowledge of system matrices, which are difficult to obtain in real-world settings. To address this challenge, we present a data-driven approach to designing STMs for unknown MASs building upon the model-based solutions. Our approach leverages a system lifting method, which allows us to derive a data-driven representation for the MAS. Subsequently, a data-driven self-triggered consensus control (STC) scheme is designed, which combines a data-driven STM with a state feedback control law. We establish a data-based stability criterion for asymptotic consensus of the closed-loop MAS in terms of linear matrix inequalities, whose solution provides a matrix for the STM as well as a stabilizing controller gain. In the presence of external disturbances, a model-based STC scheme is put forth for H∞\mathcal{H}_{\infty}-consensus of MASs, serving as a baseline for the data-driven STC. Numerical tests are conducted to validate the correctness of the data- and model-based STC approaches. Our data-driven approach demonstrates a superior trade-off between control performance and communication efficiency from finite, noisy data relative to the system identification-based one

    A Survey of Resilient Coordination for Cyber-Physical Systems Against Malicious Attacks

    Full text link
    Cyber-physical systems (CPSs) facilitate the integration of physical entities and cyber infrastructures through the utilization of pervasive computational resources and communication units, leading to improved efficiency, automation, and practical viability in both academia and industry. Due to its openness and distributed characteristics, a critical issue prevalent in CPSs is to guarantee resilience in presence of malicious attacks. This paper conducts a comprehensive survey of recent advances on resilient coordination for CPSs. Different from existing survey papers, we focus on the node injection attack and propose a novel taxonomy according to the multi-layered framework of CPS. Furthermore, miscellaneous resilient coordination problems are discussed in this survey. Specifically, some preliminaries and the fundamental problem settings are given at the beginning. Subsequently, based on a multi-layered framework of CPSs, promising results of resilient consensus are classified and reviewed from three perspectives: physical structure, communication mechanism, and network topology. Next, two typical application scenarios, i.e., multi-robot systems and smart grids are exemplified to extend resilient consensus to other coordination tasks. Particularly, we examine resilient containment and resilient distributed optimization problems, both of which demonstrate the applicability of resilient coordination approaches. Finally, potential avenues are highlighted for future research.Comment: 35 pages, 7 figures, 5 table
    • …
    corecore