2 research outputs found

    IoT-Based Cyber-Physical Communication Architecture: Challenges and Research Directions

    Get PDF
    In order to provide intelligent services, the Internet of Things (IoT) facilitates millions of smart cyber-physical devices to be enabled with network connectivity to sense, collect, process, and exchange information. Unfortunately, the traditional communication infrastructure is vulnerable to cyber attacks and link failures, so it is a challenging task for the IoT to explore these applications. In order to begin research and contribute into the IoT-based cyber-physical digital world, one will need to know the technical challenges and research opportunities. In this study, several key technical challenges and requirements for the IoT communication systems are identified. Basically, privacy, security, intelligent sensors/actuators design, low cost and complexity, universal antenna design, and friendly smart cyber-physical system design are the main challenges for the IoT implementation. Finally, the authors present a diverse set of cyber-physical communication system challenges such as practical implementation, distributed state estimation, real-time data collection, and system identification, which are the major issues require to be addressed in implementing an efficient and effective IoT communication system

    Distributed dynamic state estimation over a lossy communication network with an application to smart grids

    Full text link
    © 2016 IEEE. In contrast to the traditional centralised power system state estimation methods, this paper investigates the interconnected optimal filtering problem for distributed dynamic state estimation considering packet losses. Specifically, the power system incorporating microgrids is modelled as a state-space linear equation where sensors are deployed to obtain measurements. Basically, the sensing information is transmitted to the energy management system through a lossy communication network where measurements are lost. As the system states are unavailable, so the estimation is essential to know the overall operating conditions of the electricity network. The proposed estimator is based on the mean squared error between the actual state and its estimate. To obtain the distributed estimation, the optimal local and neighbouring gains are computed to reach a consensus estimation after exchanging their information with the neighbouring estimators. Then the convergence of the developed algorithm is theoretically proved. Afterwards, a distributed controller is designed based on the semidefinite programming approach. Simulation results demonstrate the accuracy of the developed approaches under the condition of missing measurements
    corecore